ESTUDOS COMPARATIVOS ENTRE OS PROGRAMAS FRAPCON-1 E FRAPCON-3

Antonio Teixeira e Silva¹, Cecília C. Guedes e Silva², Myrthes Castanheira¹, Luis Antonio Albiac Terremoto¹

¹ Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP) Av. Professor Lineu Prestes 2242 05508-000 São Paulo, SP <u>teixeira@ipen.br</u>

²Centro Tecnológico da Marinha em São Paulo (CTMSP) Av. Prof Lineu Prestes 2468 05508-000 São Paulo, SP cecilia@ctmsp.mar.mil.br

RESUMO

Este trabalho apresenta uma comparação entre os resultados da simulação do comportamento sob irradiação de uma vareta combustível de um reator nuclear de potência com os programas computacionais FRAPCON-1 e FRAPCON-3. O programa FRAPCON-3 é o terceiro programa liberado da série FRAPCON e apresenta várias melhorias nos seus modelos de cálculo em relação à versão FRAPCON-1.

1. INTRODUÇÃO

Os programas computacionais para o cálculo termo-mecânico em regime permanente de combustíveis de reatores de potência nuclear têm sofrido sucessivas modificações, devido principalmente à substituição de seus modelos de cálculo conservativos por modelos realistas ("best stimate"). Estas mudanças tornarem-se possíveis, devido a um grande número de experimentos conduzidos na área do comportamento do combustível nuclear sob irradiação. Dentre estes programas, os da série FRAPCON encontram-se hoje na versão 3.

O desenvolvimento da série FRAPCON é resultado do esforço mútuo do Idaho National Engineering and Environmental Laboratory (INEEL) e do Pacific Northwest National Laboratory (PNNL). O FRAPCON-1 [1] foi desenvolvido primeiro, sendo que estava baseado no código FRAP-S3. A segunda versão, FRAPCON-2 [2], envolveu modificações que adicionaram complexidade ao código. Os grandes avanços no FRAPCON-2 com relação ao FRAPCON-1 incluíam três opções mecânicas avançadas, quatro opções adicionais de liberação de gases de fissão e uma opção de análise de incerteza.

Algumas análises de projetos de combustível desenvolvidos no IPEN-CNEN/SP, em anos anteriores, utilizaram a versão do programa FRAPCON-1. Com a recente aquisição do FRAPCON-3 [3], tornou-se necessário reavaliar projetos desenvolvidos com as versões anteriores do programa, principalmente o impacto da utilização de modelos mais realistas em substituição aos modelos mais conservativos utilizados para gerar os diversos parâmetros de

saída do programa, como por exemplo, as temperaturas no combustível, a pressão interna e as tensões e deformações na vareta combustível.

Os manuais do programa FRAPCON-3, volumes 1, 2, 3 e 4 [4] incluem todas as modificações introduzidas no programa relativas às propriedades materiais da vareta combustível e às relativas aos modelos de cálculo para análise do comportamento do combustível e sua aplicação para altas queimas.

Devido à complexidade das modificações introduzidas no programa FRAPCON-3, foi pensado como exercício, simular com este programa uma vareta combustível anteriormente simulada com o programa FRAPCON-1 e analisar as diferenças obtidas nas principais variáveis de saída nas duas simulações. As discrepâncias nos resultados poderiam dar indicação do impacto destas modificações nas variáveis de saída do programa.

2. ANÁLISE DAS SIMULAÇÕES CONDUZIDAS

Para a realização da comparação entre os programas FRAPCON 1 e FRAPCON 3, foram realizadas simulações utilizando os dados de entrada mostrados na Tab. 1. Estes dados são referentes à vareta combustível da Central Angra 1. Ela foi escolhida porque os programas da série FRAP podiam prever com certa precisão os resultados de seu desempenho, apresentados no FSAR Angra 1 [5]. Queimas até 66.000 MWd/tU foram atingidas nas simulações, uma vez que o programa FRAPCON-3 foi concebido com modelos de cálculo e propriedades materiais válidos até queimas elevadas entre 65.000 até 75.000 MWd/tU.

Diâmetro da pastilha de UO_2 (cm)	0,8200
Diâmetro interno do revestimento (cm)	0,8508
Diâmetro externo do revestimento (cm)	0,9500
Densidade do combustível (% da densidade teórica)	95,0
Enriquecimento (% em peso de U-235)	2,6
Comprimento da coluna de pastilha (cm)	365,76
Pressão interna do gás (MPa)	3,103 (He)
Pressão do refrigerante (MPa)	15,494
Temperatura de entrada do refrigerante (oC)	287,5

Tabala	1.	Fen	ocifica	<u>.</u>	۵h	nrojeto	da	varata	comh	netíval	do	Angra	1
Tabela	1.	rsh	ecifica	çau (ue	projeto	ua	vareta	COMD	usuvei	ue /	Angra	1.

Os principais resultados obtidos para estas simulações, assim como os dados de potência linear e de queima considerados, são apresentados nas Tabelas 2 e 3 e nas Figuras 1, 2, 3 e 4. A partir desses resultados, é possível observar que existem diferenças significativas nos resultados das variáveis de saída dos programas FRAPCON-1 e FRAPCON-3.

Uma diferença significativa está associada ao comportamento da espessura da folga entre a pastilha combustível e o revestimento da vareta combustível ao longo da queima. Os valores desse parâmetro gerados pelo FRAPCON-1 (Tab. 2) mostram que o contato entre a pastilha combustível e o revestimento ocorre após 10.000 horas de operação. Nos resultados de cálculo obtidos com o FRAPCON-3 (Tab. 3), o contato não ocorre em nenhum momento da operação, mesmo após uma queima de 65.270 MWd/tU (24.000 horas de operação).

Tempo (h)	Queima (MWd/tU)	Potência (W/cm)	Temp. vareta (°C)	Folga (cm)	Temp. cent. combustível .(°C)	Cont. (MPa)	Tensão rev. (°C)	Deform. (%)	Diam. Ext. comb. (cm)	Pressão interna (MPa)
2000	5994	340,1	367	0,0082	1237	-	-49,70	-0,340	0,8265	8,95
4000	11988	340,1	367	0,0074	1200	-	-47,99	-0,410	0,8267	9,24
6000	17948	338,6	367	0,0062	1171	-	-44,95	-0,542	0,8269	9,64
8000	23880	336,8	367	0,0049	1148	-	-41,60	-0,669	0,8271	10,07
10000	29783	335,3	367	0,0018	1132	-	-37,41	-0,788	0,8291	10,62
10000,01	29783	308,1	361	-	1035	-	-39,32	-0,790	0,8296	10,38
12000	35189	307,1	361	-	1029	4,35	-1,97	-0,835	0,8308	10,88
14000	40560	305,1	361	-	1016	14,70	80,34	-0,607	0,8325	11,29
16000	45915	304,1	362	-	1008	16,61	97,41	-0,370	0,8345	11,62
18000	51268	304,1	362	-	1003	16,37	98,12	-0,132	0,8365	11,95
20000	56467	295,3	361	-	972	15,92	96,58	0,073	0,8382	12,20
22000	61666	295,3	361	-	971	15,90	98,53	0,306	0,8402	12,47
24000	66738	288,1	359	-	950	15,48	96,94	0,510	0,8419	12,68

Tabela 2: Resultados da simulação com o FRAPCON 1 para a vareta de zircaloy.

Tabela 3: Resultados da simulação com o FRAPCON 3 para a vareta de zircaloy.

Tempo (h)	Queima (MWd/tU)	Potência (W/cm)	Temp. vareta	Folga (cm)	Temp. cent. combustível	Cont. (MPa)	Tensão rev.	Deform.	Diam. Ext.	Pressão interna
	· /	× ,	(°C)		.(°C)		(°C)		comb.	(MPa)
									(cm)	
1999.20	5820	339.2	363.33	0.0051	1434.44	0	-38.76	0.037	0.8419	9.79
4000.80	11650	339.2	365.00	0.0040	1409.44	0	-37.30	-0.002	0.8428	10.14
6000.00	17450	337.6	367.22	0.0034	1397.22	0	-35.95	-0.026	0.8439	10.48
7999.20	23230	336.0	370.00	0.0027	1391.11	0	-33.57	-0.042	0.8451	11.07
10000.80	28980	334.3	372.78	0.0021	1382.78	0	-30.87	-0.053	0.8462	11.73
10651.20	30800	325.5	372.22	0.0020	1348.33	0	-30.88	-0.058	0.8463	11.73
12000.00	34400	306.1	369.44	0.0018	1276.11	0	-31.12	-0.069	0.8465	11.67
13999.20	39630	304.1	371.67	0.0013	1255.56	0	-30.10	-0.077	0.8474	11.92
16000.80	44840	303.1	375.00	0.0008	1240.56	0	-27.66	-0.079	0.8484	12.53
18000.00	50050	303.1	378.89	0.0003	1226.67	0	-25.99	-0.081	0.8496	12.91
19999.20	55140	294.3	381.11	0.0003	1213.89	0	-22.79	-0.078	0.8496	13.73
22000.80	60200	294.3	386.11	0.0003	1233.33	0	-19.35	-0.071	0.8497	14.57
24000.00	65270	295.3	392.78	0.0003	1261.11	0	-12.99	-0.053	0.8498	16.13

O comportamento acima descrito pode também ser visto na Fig. 1, que mostra a variação dos diâmetros da pastilha e interno do revestimento calculada ao longo do tempo de irradiação.

Figura 1: Diâmetro do combustível e diâmetro interno do revestimento da vareta combustível, calculados pelos códigos FRAPCON-1 (■) e FRAPCON-3 (•)

Os principais fatores que influenciam o tamanho da espessura da folga entre a pastilha combustível e o revestimento ao longo da queima são os fenômenos associados às variações dimensionais da pastilha, tais como a expansão térmica e a formação de trincas, associadas ao fenômeno da relocação, a densificação e o inchamento induzidos pela irradiação e aqueles relacionados às variações dimensionais do revestimento, como a expansão térmica, o diferencial de pressão aplicado e a fluência ("creep") térmica e sob irradiação.

Os modelos dos fenômenos relacionados à pastilha e ao revestimento apresentaram comportamento totalmente distinto entre o FRAPCON-1 e o FRAPCON-3 (vide Fig. 1). No caso dos resultados do FRAPCON-1, o fechamento da folga entre a pastilha combustível e o revestimento é determinado preponderantemente pela fluência ("creep") no revestimento. Já, os resultados do FRAPCON-3 mostram que o fechamento da folga ocorre ao longo do tempo, devido principalmente aos fenômenos na pastilha (vide Fig. 2). A fluência no revestimento é pouco preponderante na simulação efetuada com o programa FRAPCON-3.

A pressão interna na vareta combustível apresenta valores mais elevados ao longo da queima na simulação com o FRAPCON-3 (vide Fig. 3). No início da vida, isto pode ser explicado devido à menor folga obtida entre a pastilha e o revestimento nesta simulação, o que acarretaria menor volume livre na vareta, levando a uma maior pressão interna. Ao longo da queima, a espessura da folga na simulação com o FRAPCON-1 vai diminuindo gradativamente até o seu fechamento. Mesmo a partir desde ponto, a pressão interna simulada para a vareta combustível com o FRAPCON-3 apresenta maiores valores, o que poderia indicar uma liberação muito maior de gases de fissão nesta vareta, aumentando consequentemente o número de moles destes gases na folga. Este aumento no número de moles de gases de fissão interna.

Figura 2: Variação dimensional da pastilha de UO₂, calculada pelo FRAPCON-3, em função do tempo, como conseqüência dos fenômenos de inchamento, expansão térmica, relocação e densificação.

O aumento na taxa de liberação de gases de fissão também é proporcional às temperaturas no combustível. As temperaturas no combustível apresentaram valores mais elevados na simulação com o FRAPCON-3 (Fig. 4). A princípio, como a folga pastilha-revestimento é menor no início da vida para esta simulação, era de se esperar que a condutividade térmica na folga fosse maior neste caso, levando a menores temperaturas no combustível. Isto, entretanto não ocorreu, denotando que as condutividades térmicas no combustível e na folga podem estar sendo calculadas por modelos distintos nos dois programas, ou ainda que uma maior liberação de gases de fissão tenha levado a uma maior deterioração da condutividade da folga.

Figura 3: Evolução da pressão interna com o tempo.

Figura 4: Variação da temperatura central do combustível com o tempo. As curvas obtidas pelos códigos FRAPCON-1 e FRAPCON-3 apresentam comportamento semelhante, embora os valores gerados pelo FRAPCON-3 tenham sido maiores.

3. CONCLUSÕES

As simulações com os programas FRAPCON-1 e FRAPCON-3 mostraram que as modificações introduzidas nos modelos de cálculo do programa FRAPCON-3 em relação ao programa FRAPCON-1 levaram a diferenças significativas nos resultados de saída do programa. Embora uma análise detalhada destas modificações deva ser conduzida, diferenças nos modelos de fluência do revestimento e de liberação de gases de fissão foram constatadas nestas simulações. Como estes modelos influenciam de maneira preponderante nos resultados de saída dos programas, é de se esperar que os resultados de análise conduzidos pelo FRAPCON-1 deverão ser reavaliados com o FRAPCON-3. Nota-se que a utilização de modelos mais realistas no programa FRAPCON-3 não levam, necessariamente, a valores mais favoráveis quando se pensa nos limites de projeto admitidos para uma vareta combustível. No caso aqui apresentado, temperaturas mais elevadas foram obtidas nas simulações com o programa FRAPCON-3.

REFERÊNCIAS

- 1. G. A. BERNA; M. P. BOHN; D. R. COLEMAN, *FRAPCON-1: A computer code for the steady state analysis of oxide fuel rods*, Report CDAP-TR-78-038-R1, Idaho National Engineering Laboratory, November, 1978.
- 2. G.S. BERNA et alli, *FRAPCON-2: A computer code for the calculation of the steady*state thermal mechanical behavior of oxide fuel rods, NUREG/CR–1845, January, 1981.
- 3. G.A. BERNA; C.E. BEYER; K.L. DAVIS; D.D. LANNING. *FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup*. NUREG/CR-6534 Volume 2, PNNL-11513, December, 1997.
- 4. Pacific Northwest National Laboratory, FRAPCON-3 Manuals, http://www.pnl.gov/frapcon3/documentation/manuals,html.
- 5. Final Safety Analysis Report Angra 1 Nuclear Power Plant, Westinghouse Nuclear Energy Systems, Furnas Centrais Elétricas S.A., Rio de Janeiro.