

DESCRIÇÃO DO "FORNO GRESIL I" PARA IRRADIAÇÃO DE AMOSTRAS NO REATOR E MEDIDA DE SUA RESISTÊNCIA ELÉTRICA

PHILIPPE BROSSON, GEORGE LUCKI, HERCÍLIO RECHENBERG, LAURA SORDI e RAPHAEL TIBERGHIEN

INSTITUTO DE ENERGIA ATOMICA Caixa Postal 11049 (Pinheiros) CIDADE UNIVERSITARIA "ARMANDO DE SALLES OLIVEIRA" SÃO PAULO — BRASIL

CNEN - DPCT

RECEBIDO EM 261 01/ 19 7. Sech Blen

DESCRIÇÃO DO "FORNO GRESIL I" PARA IRRADIAÇÃO DE AMOSTRAS NO REATOR E MEDIDA DE SUA RESISTÊNCIA ELÉTRICA

Philippe Brosson, George Lucki, Hercílio Rechenberg, Laura Sordi e Raphael Tiberghien

> GRUPO GRESIL Instituto de Energia Atômica São Paulo - Brasil

> > Publicação IEA Nº 212 Maio - 1970

Comissão Nacional de Energia Nuclear

Presidente: Prof.Dr. Hervásio Guimarães de Carvalho

Universidade de São Paulo

Reitor: Prof.Dr. Miguel Reale

Instituto de Energia Atômica

Diretor: Prof.Dr. Rômulo Ribeiro Pieroni

Conselno Técnico-Científico do IEA

Prof.Dr. José Moura Gonçalves)	
Prof.Ir. José Augusto Martins)	pela USP
Prof.Dr. Rui Ribeiro Franco)	
Prof.Dr. Theodoreto H.I. de Arruda Souto)	pela CNEN

Divisões Didático-Científicas

Divisão de Física Nuclear -Chefe: Prof.Dr. José Goldenberg

Divisão de Radioquímica -Chefe: Prof.Dr. Fausto Walter de Lima

Divisão de Radiobiologia -Chefe: Prof.Dr. Rômulo Ribeiro Pieroni

Divisão de Metalurgia Nuclear -Chefe: Prof.Dr. Tharcísio D.S. Santos

Divisão de Engenharia Química -Chefe: Lic. Alcídio Abrão

Divisão de Engenharia Nuclear -Chefe: Eng^o Pedro Bento de Camargo

Divisão de Operação e Manutenção de Reatores -Chefe: Eng^o Azor Camargo Penteado Filho

Divisão de Física de Reatores -Chefe: Prof.Dr. Paulo Saraiva de Toledo

Divisão de Ensino e Formação -Chefe: Prof.Dr. Rui Ribeiro Franco

DESCRIÇÃO DO "FORNO GRESIL 1" PARA IRRADIAÇÃO DE AMOSTRAS

NO REATOR E MEDIDA DE SUA RESISTÊNCIA ELÉTRICA

Philippe Brosson*, George Lucki**, Hercilio Rechenberg** Laura Sordi** e Raphael Tiberghien*

RESUMO

Descrevenos un dispositivo que permite medir a resistência elétrica de pequenas amos tras em forma de fios. É possível submeter as amostras a uma irradiação neutrônica (reator de piscina) e acompanhar a evolução de sua resistividade.

A amostra é colocada no interior de um forno a ser descrito. A estabilidade da temperatura é controlada e pode-se realizar qualquer tipo de tratamento térmico no intervalo de 100° a 600°C. Isso possibilita diversos estudos de física de estado sólido.

Êste tipo de forno está sendo utilizado nos reatores Me lusine, em Grenoble, e IEAR-1, em São Paulo.

Compreende:

- dispositivo de irradiação (fig. 1)
- dispositivo de regulagem de temperatura (fig. 2)
- circuito de medida de resistência elétrica (fig. 3)

As particularidades dêste conjunto são, as de permitir uma variação de temperatura de 100[°]C a 600[°]C e de ocupar no caroço do reator IEAR-1 sõ um quarto do espaço de um elemento combustível do tipo MTR, utilizando pequena potência de aquecimento.

Encontram-se, em anexo, os calculos sobre a troca de ca lor do dispositivo de irradiação.

Comissionado junto ao Instituto de Energia Atômica - Centre d'études Nucléaires - Grenoble - France.

^{**} Instituto de Energia Atômica - São Paulo - Brasil.

I - DISPOSITIVO DE IRRADIAÇÃO

1.1 - Princípio de funcionamento

Além do aquecimento nuclear, que não é desprezível (0,25 W/g, com reator crítico em 2MW), utiliza-se o aquecimento elétrico, por efeito Joule, numa resistência enrolada em tôrno do porta-amostra.

Preenche-se o dispositivo com o gás hélio (1,5 atmosferas) que tem por finalidade facilitar a troca de calor e ev<u>i</u> tar a oxidação da amostra.

Para irradiações a altas temperaturas, usa-se geralmente uma mistura do tipo argônio-hélio

1.2 - Descrição (Fig. 1)

O dispositivo e um conjunto estanque, compreendendo:

- na parte inferior, um tubo de alumínio (Al 1100) de
 2.500 mm de comprimento com um diâmetro externo de
 32 mm. Êste tubo, que contém o forno pròpriamente
 dito, é introduzido num suporte em posição contígua ao carôço do reator;
- um cabeçote desmontável acima da parte inferior e sôbre o qual está soldado um tubo flexível também estanque. O cabeçote desmontável permite colocar e retirar as amostras;
- uma caixa de saída. Tôdas as conexões estanques dos fios são feitas por meio de "pérolas de vidro":
- um suporte de alumínio (Al 1100) que sustenta o for no.

O forno propriamente dito é um cilindro de aço inoxidável com 160 mm de comprimento dentro do qual é introduzido o su porte da amostra. Os diâmetros, interno e externo, do cilindro são de 14 e 15 mm. Sobre êste cilindro é enrolada a resistência de

- POSICÃO DO DISPOSITIVO DENTRO DA CAIXA D'ÁGUA

ESQUEMA DO DISPOSITIVO FARA IRRADIAÇÃO

FIGURA 1

aquecimento, do tipo "thermocoax" (condutor: níquel-cromo; capa: inconel; isolante: oxido de magnésio) com l mm de diâmetro. A \log peratura é controlada por um termopar de níquel/níquel-cromo fiam do dentro do suporte de amostra.

1.3 - Colocação e retirada de amostras

A colocação e a retirada de amostras são realizadas.. abrindo-se o dispositivo ao nível do cabeçote desmontável e utili zando-se o extrator no qual está prêso o suporte de amostra. A po sição do cabeçote desmontável no dispositivo facilita essas opera ções.

11 - DISPOSITIVO DE REGULAGEM DA TEMPERATURA

A irradiação e as medidas devem ser feitas em temper<u>a</u> turas bem controladas e, portanto, a precisão desejada implica na utilização de um regulador de temperatura.

Como o forno é de pequena inércia térmica, êste dispo sitivo elimina os efeitos das flutuações, tanto na tensão da rêde elétrica como do aquecimento nuclear, corrigindo automáticamentea corrente de aquecimento.

2.1 - Princípio de funcionamento

Como desejamos que a amostra fique a uma temperatura T_o , é necessário impor que a diferença $T-T_o$, onde T é a temperatura ra real medida, seja a menor possível.

A tensão V do termopar da amostra é comparada com a tensão fixada anteriormente e representativa da temperatura T_o. Essa diferença é analisada e conforme seja ela, positiva ou negativa, comanda, num sentido ou noutro, uma variação da corrente de aquecimento do forno.

Com este tipo de auto-controle obtem-se naturalmente a estabilização da temperatura.

. 4 .

2.2 - Realização da regulagem (Fig. 2)

A tensão de referência é fornecida por uma bateria de 2V especialmente estável, utilizando-se um divisor de tensão. A diferença entre essa tensão e a do termopar da amostra é enviada a um registrador MECI do tipo "Minipont". O registro da a visual<u>1</u> zação das variações de temperatura do forno.

Faz-se o comando da variação da corrente de aquecimen to por meio de um sistema de relés com duas possibilidades, con forme a amplitude desejada:

- "tudo-nada" se a corrente do forno deve passar de um certo valor a zero;
- "tudo-pouco" se o valor da corrente mudar para um valor um pouco menor.

Esta escolha é feita manualmente.

No caso "tudo-pouco" a diferença entre os dois valôres da corrente pode ser ajustada afím de obter-se uma regulagem mais fina.

Um motor, que tem dois sentidos de rotação, é acoplado ao "Variac" fornecedor da tensão de aquecimento do forno. Éle amortece as variações da corrente, que muda bruscamente.

Um sistema de segurança corta a corrente do forno no caso de ocorrer uma grande variação de temperatura. Se o cursordo "Minipont" sair de um certo intervalo, de largura regulável, em tôrno do ponto de regulagem, abre-se um microruptor e o aquecimen to é cortado, desligando-se definitivamente o aparêlho.

Com êstes refinamentos o forno acima descrito tem uma estabilidade média da ordem de $\pm 0,5^{\circ}$ C.

III - CIRCUITO DE MEDIDA DE RESISTÊNCIA ELÉTRICA

3.1 - Princípio de medida

ESQUEMA SIMPLIFICADO DO DISPOSITIVO DE REGULAGEM DA TEMPERATURA

Utiliza-se o método mais simples que consiste na de terminação da resistência medindo a corrente e a tensão da amostra (método dos quatro fios) (Fig. 3).

3.2 - Realização das medidas

A corrente usada, fornecida por acumuladores comuns, é da ordem de 20 mA para uma resistência de aproximadamente 1 Ω .

Efetuam-se as medidas utilizando-se uma ponte potenciométrica SKM MECI. Uma chave inversora permite medir a resistên cia nos dois sentidos da corrente, eliminando assim as tensões pro vocadas pelas fôrças termoelétricas.

O intervalo de oscilação da temperatura da amostra \tilde{e} de ± 0,5[°]C em tôrno da temperatura fixada. Portanto, como se des<u>e</u> ja uma boa precisão, deve-se escolher um determinado ponto dentro do intervalo e fazer as medidas sempre que a temperatura estiver exatamente nesse ponto.

Nas experiências por nos realizadas o ponto escolhido correspondia à temperatura média do intervalo de oscilação. Obteve-se, assim, uma precisão relativa de 10^{-4} na medida da resistên cia.

> NOTA - Nas experiências realizadas as amostras eram fios de 0,3 mm de diâmetro, presos entre as duas metades semi-cilíndricas do suporte de alumínio puro (de curto período radioativo). A superfície do porta-amostra é isolada elètricamente por meio de uma camada de óxido de alumínio depositada anodicamente.

CIRCUITO DE MEDIDA DE RESISTÊNCIA ELÉTRICA

FIGURA 3

ANEXO

CÁLCULO DO AQUECIMENTO PARA 2 GASES DE PREENCHIMENTO:

ARGÔNIO E HÉLIO

Principais características:

- Temperatura máxima do forno: 600°C
- Temperatura do tubo de irradiação: 35ºC (temperatura da piscina)
- Atmosfera de helio acima de uma atmosfera, sem circulação
- Comprimento total do dispositivo de irradiação: 9,700 mm
- A temperatura atingida pela amostra é provocada:
- 1) pelo aquecimento nuclear ("gamma Heating")
- 2) pelo aquecimento elétrico

A figura 4 ilustra a secção longitudinal do dispositivo ao nível da amostra. Podem-se distinguir:

```
- o tubo de irradiação (Al)
  os cálculos foram feitos para dois tubos diferentes:
  - tubo nº 1, diâmetros: 22
                               -
                                    32 mm
  - tubo nº 2, diametros: 28,6 -
                                    31.8
- uma primeira camada cilindrica de gas
- o enrolamento do forno - resistência de aquecimento Ø=1mm
                         - forno Ø = 14 - 15 mm
- uma segunda camada cilíndrica de gas
- o suporte de amostra \emptyset = 13,6 mm (Al)
O aquecimento global é causado:
1) pelo aquecimento no suporte de alumínio
2) pelo aquecimento no forno de aço inoxidavel (considerou-
   se desprezível o aquecimento no enrolamento do forno)
```


SECÇÃO LONGITUDINAL DO

- 3) pelo aquecimento elétrico
- Ao fazer-se o calculo do aquecimento:
- 1) desprezaram-se as correntes térmicas
- 2) supôs-se nulo o gradiente de temperatura no forno
- 3) admitiu-se que a temperatura do tubo de irradiação é igual à da água da piscina (~35^oC) (refrigeração por con vecção forçada)
- 4) considerou-se o aquecimento em watt por centimetro de al tura.

A resistência térmica é constituída por duas camadas de gás ("gas gap") em série:

denominação da	resistência da	es	pes	sura	da
camada	camada		C	amada	
1	R ₁	14	-	13,6	mm
2	^R 2	22	-	17	mm
2'	R [*] 2	28,6	-	17	m

Denominaremos o aquecimento gama, no suporte, expresso em w/cm, de ϕ_1 ; no forno, de ϕ_2 e o aquecimento elétrico de ϕ_2 .

Resistência térmica (R₁) da camada 1 de gás por centimetro de al--tura:

$$R_{1} = \frac{1}{2\pi\lambda} \ln \frac{1}{r_{i}} = \frac{1}{2\pi\lambda} \ln \frac{7}{6.8}$$

$$R_{1} = \frac{4.4 \cdot 10^{-3}}{\lambda} \quad (^{\circ}C \text{ cm/w})$$

onde r_e é o raio externo, de 7 mm, r_i o raio interno, de 6,8 mm, e λ a condutividade térmica. . 12 .

Resistência térmica (R₂) da camada 2 de gás por centímetro de altura:

$$R_2 = \frac{1}{2\pi\lambda} \quad \ln \frac{11}{3,5}$$

$$R_2 = \frac{4,3 \cdot 10^{-3}}{\lambda} \quad (^{\circ}C \ cm/w)$$

onde o raio externo é 11 mm e o raio interno, 8,5 mm.

Resistência térmica (R¹₂) da camada 2' de gás por centimetro de altura:

$$R_{2}^{*} = \frac{1}{2\pi\lambda} \quad \ln \quad \frac{14,3}{8,5}$$
$$R_{2}^{*} = \frac{83 \cdot 10^{-3}}{\lambda} \quad (^{\circ}C \ cm/w)$$

Portanto, qualquer que seja o tubo de irradiação, temos que o aquecimento total ΔT é a soma do aquecimento ΔT_1 da camada 1 e ΔT_2 da camada 2, logo:

$$\Delta T = \Delta T_1 + \Delta T_2$$

Levando em conta as suposições feitas anteriormente resulta:

$$\Delta T = \Delta T_{1} + \Delta T_{2} = R_{1}\phi_{1} + R_{2}(\phi_{1}+\phi_{2}+\phi_{e})$$

$$\Delta T = \phi_{1} (R_{1} + R_{2}) + R_{2} (\phi_{e} + \phi_{2})$$

A.1 - AQUECIMENTO GAMA - "GAMMA HEATING": reator crítico em 2Mw

Neste caso $\phi_e = 0$ então:

$$\Delta T = \phi_1 (R_1 + R_2) + R_2 \phi_2$$

O fluxo gama (com o reator crítico em 2Mw) foi medido

com a ajuda de um calorímetro de grafita que fornece o valor do aquecimento em w/g, na grafita. No local do dispositivo o fluxo gama é de 0,25 w/g. Adotou-se o mesmo valor para o alumínio e pa ra o aço inoxidável.

Os aquecimentos nucleares por centimetro de altura en contram-se na tabela abaixo:

Elemento	Diâmetro (mm)	Densidade	Massa (g)	Aquecimento (w/cm)
Suporte	13,6	2,7	3,9	¢ 1 ≈ 0,98
Forno	14 - 15	7,9	1,9	¢2 ^{∞ 0,48}

Reator critico em 2Mw

Desenvolveremos, separadamente, o cálculo para os dois gases: hélio e argônio.

A.1.1 - Gás de Preenchimento: Hélio

A condutividade térmica λ depende da temperatura do gás. Se T é a temperatura da amostra, a temperatura média do gás será $\frac{T+35}{2}$ (35°C: temperatura da água da piscina); os valôres $\lambda = f(T)$ vêm do "Nuclear Engineering Handbook", de E.Thergington.

Tubo nº 1

diâmetros: 22 - 32 mm "gas-gap": 17 - 22 mm

$$R_1 = \frac{4.4 \cdot 10^{-3}}{\lambda}$$
 $R_2 = \frac{43 \cdot 10^{-3}}{\lambda}$

Escolhendo-se a temperatura de 80° C λ é igual a 1,6 . $.10^{-3}$ w/cm, donde:

. 14 .

$$\Delta T = \frac{0,98. (4,4+43) \cdot 10^{-3}}{1,6 \cdot 10^{-3}} + \frac{43 \cdot 10^{-3} \cdot 0,48}{1,6 \cdot 10^{-3}}$$
$$\Delta T = 42^{\circ}C$$

O valor encontrado experimentalmente foi: $\Delta T = 46^{\circ}C$.

Tubo nº 2

Analogamente:

 ΔT teorico = 78°C ΔT experimental = 90°C

A.1.2 - Gas de Preenchimento: Argônio

Tubo nº 1

diâmetros: 22 - 32 mm "gas-gap": 17 - 22 mm

Escolhendo-se a temperatura de 300° C λ é igual a 2,4 . 10^{-4} w/cm°C donde:

$$\Delta T = \frac{0.98 \cdot 47.4 \cdot 10^{-3}}{2.4 \cdot 10^{-4}} + \frac{4.3 \cdot 10^{-3} \cdot 0.48}{2.4 \cdot 10^{-4}}$$
$$\Delta T = 280^{\circ}C$$

0 valor experimental resultante foi: $\Delta T = 185^{\circ}C$

Tubo nº 2

Com êste tubo não foram feitos nem o cálculo nem a ex periência, pois a temperatura atingida seria muito elevada para o

. 15 .

nosso dispositivo (grande "gas gap" e má condutividade térmica do argônio).

A.1.3 - Conclusão

- Com o hélio como gás de troca, há uma boa concordância entre os valôres teóricos e experimentais.
- Com o argônio, o valor experimental é menor do que o va lor teórico. Isso é explicado pelo fato do argônio ser um mau condutor de calor, o que causa apreciáveis corren tes de convecção.
- Reproduzimos abaixo o resumo sob a forma de tabela, dando
 ΔT para diferentes potências do reator (supondo que o dis positivo esteja no mesmo local).

Potência do Reator			2 Mw	5 Mw	lo Mw
"Gamma Heating"		0,25 w/g	0,62 w/g	1,25 w/g	
G Á	Hélio	Tubo nº 1	42 ⁰ C	105°C	210 ⁰ C
S DE		Tubo nº 2	90 ° C	226 ⁵ 0	450 ⁰ 0
T R Argâ C A	Argônio	Tubo nº l	185°C	460°C	920°C
		Tube nº 2	a ta	-	-

ΔT - diferença de temperatura entre a amostra e a água.

- A potência de 5 Mw, utilizando-se o hélio como gás de troca, as irradiações em temperaturas inferiores a
 200°C não vão ser possíveis com o tubo nº 2.
- A 10 Mw será necessário colocar o dispositivo em um fluxo gama mais fraco se se deseja irradiar a partir de ...
 100°C.

. 16 .

A.2 - <u>AQUECIMENTO ELÉTRICO</u>: dispositivo fora do caroço, mas dentro da água.

Com o tubo l conduziu-se a experiência utilizando- se os dois gases: hélio e argônio. Com o tubo 2 usou-se sòmente o hé lio, porque com o argônio, mesmo usando pequenas potências, as temperaturas atingidas seriam muito altas.

A variação de temperatura fornecida pelo aquecimento elétrico é:

$$T = R_e \phi_e$$

onde ϕ_e é a potência elétrica de aquecimento em w/cm (o forno é enrolado em espirais muito próximas).

Utilizou-se um forno com as características seguintes:

R	æ	25	ohms	(resistência de aq	uecimento)
L	22	16	cm	(comprimento)	

Tensão máxima de entrada: 110 V.

Portanto, o aquecimento elétrico máximo é: 30 w/cm.

A Figura 5 indica as curvas teóricas e experimentais de ΔT em função de ϕ_{z} :

 $T = f(\phi_{\rho})$

- Nota-se, na figura referida, que os valores experimentais são sempre inferiores aos valores teoricos, sobretudo no caso do argônio onde as correntes de convecção foram desprezadas.
- Como a temperatura de fusão do suporte de amostra de alumínio é 650°C, aproximadamente, deve-se impor o limite máximo de 600°C.

- Com helio no tubo nº 1 ("gas gap" pequeno 17 - 22mm)

FIGURA 5

a temperatura limite não pôde ser alcançada.

- Com hélio no tubo nº 2, a temperatura limite foi obtida por um aquecimento da ordem de 14 w/cm.

Na tabela que segue apresentamos, de forma resumida, a potência em w/cm, necessária para obter uma temperatura da or dem de 600° C.

	` Tubo n ^g l	Tubo nº 2
	"gas gap"= 17 - 22 mm	"gas gap"= 17 - 28,6 mm
Hélio	mais que 30 w/cm	20 w/cm
Argônio	14 w/cm	

A.3 - AQUECIMENTO GAMA E AQUECIMENTO ELÉTRICO: dispositivo den tro do caroço do reator.

Analogamente ao caso anterior as experiências foram realizadas com hélio para os tubos 1 e 2, e com argônio apenas pa ra o tubo 1. À potência de 2 Mw o aquecimento gama é de 0,25 w/g.

A figura 6 contém os resultados obtidos. Pode-se notar que para o hélio no tubo 1, os valôres experimentais são um pouco menores do que os teóricos.

Em resumo, a potência, em w/cm, necessária para se ob ter a temperatura de 600° C é a seguinte:

	Tubo n≌ l	Tubo n ^g 2
	"gas gap" = 17 - 22 mm	"gas gap" = 17 - 28,6 mm
Hélio	28 w/cm	18 w/cm
Argônio	12 w/cm	

FIGURA 6

61

. 20 .

ABSTRACT

We describe an apparatus for measuring electrical resistivity in short wire samples. With this device it is possible to expose the samples to a neutron irradiation (swiming pool reactor) and to follow the evolution of their resistivity.

The sample is placed inside the oven to be described. Thermal treatment is selectable between 100° and 600°C, allowing several studies in solid state physics.

RESUMÉ

Nous décrivons un dispositif permettant de mesurer la résistance eléctrique d'echan tillons filiformes de petite taille. Il est possible de soumettre les échantillons a une irradiation neutronique (reacteur de type piscine) et de suivre l'evolution de leur résistivité.

A l'aide d'un four entournant l'echantillon, il est possible de lui faire subir n'importe quel type de traitmente thermique entre 100° et 600° C. Diverses études de physique du solide, peuvent être ainsi entreprises.

RIASSUNTO

Descriviamo um disposotivo che permette misurare la resistenza eletrica di piccoli campioni filiformi. È possibile sottomettere i campioni a una irradiazione neutronica (reattore a piscina) e seguire l'evolusione della loro resistività.

Con l'aiuto di un forno che circonda il campione, è possibile sottoporlo a qualsiasi tipo di trattamento termico tra 100° e 600°C, Vari studi di fisica dei solidi possono, in questo modo, essere intrapresi.