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a b s t r a c t

Galectin-3 (Gal-3) is a multifunctional glycan-binding protein that participates in many pathophysio-
logical events and has been described as a biomarker and potential therapeutic target for severe dis-
orders, such as cancer. Several probes for Gal-3 or its ligands have been developed, however both the
pathophysiological mechanisms and potential biomedical applications of Gal-3 remain not fully assessed.
Molecular imaging using bioluminescent probes provides great sensitivity for in vivo and in vitro analysis
for both cellular and whole multicellular organism tracking and target detection. Here, we engineered a
chimeric molecule consisting of Renilla luciferase fused with mouse Gal-3 (RLuc-mGal-3). RLuc-mGal-3
preparation was highly homogenous, soluble, active, and has molecular mass of 65,870.95 Da. This
molecule was able to bind to MKN45 cell surface, property which was inhibited by the reduction of Gal-3
ligands on the cell surface by the overexpression of ST6GalNAc-I. In order to obtain an efficient and stable
delivery system, RLuc-mGal-3 was adsorbed to poly-lactic acid nanoparticles, which increased binding to
MKN45 cells in vitro. Furthermore, bioluminescence imaging showed that RLuc-mGal-3 was able to
indicate the presence of implanted tumor in mice, event drastically inhibited by the presence of lactose.
This novel bioluminescent chimeric molecule offers a safe and highly sensitive alternative to fluorescent
and radiolabeled probes with potential application in biomedical research for a better understanding of
the distribution and fate of Gal-3 and its ligands in vitro and in vivo.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

Galectins are a group of proteins that bind to glycoconjugates
containing b-galactosides and share a conserved primary structure
homology in their carbohydrate recognition domain (CRD).
Galectin-3 (Gal-3), the chimera-type galectin, has ~30 kDa and only
one CRD associated to long N-terminal domain [1]. The N-terminal
domain of Gal-3 is involved in protein-protein interactions and
ciences of Ribeir~ao Preto, USP,
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allows its oligomerization upon binding to multivalent oligosac-
charides [2,3]. Gal-3 is ubiquitously express and plays multiple
biological functions, depending on its subcellular localization. For
example, in the cytoplasm, several molecules have been identified
as Gal-3 binding partners, playing a relevant role in apoptotic
events [4e6]. Gal-3 participates in various biological events,
including cellular homeostasis, cell differentiation, angiogenesis,
and immune regulation [7e9].

Indeed, Gal-3 and its ligands have been described as biomarkers
of many diseases such as cardiovascular and autoimmune illnesses
[10e14]. The expression levels of Gal-3 are often altered in cancer
and have been correlated with increased tumor susceptibility,
chemotherapeutic drug resistance, aggressiveness and the acqui-
sition of a metastatic phenotype [15e18]. Considering the wide
biological functions of Gal-3, future research is still needed to better
understand the conditions under which Gal-3 affects several
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pathological conditions, and the role of Gal-3 ligands, which can
vary depending on the disorder stages.

The recombinant fusion of Gal-3 with fluorescent and enzymatic
probes have gained interest as tools to study the impact of glyco-
biology of tumor microenvironment [19,20]. Noninvasive optical
imaging has been widely used for the real-time detection of mo-
lecular targets, biological processes and drug tests with several
advantages over other tools: no exposure to ionizing radiation,
quantifiability and low cost [21]. Bioluminescent imaging has a very
high sensitivity and can be efficiently performed using Renilla, a
36 kDa luciferase widely used a reporter for cell tracking, animal
imaging and detection of specific targets [22e24].

Hence, here we developed a suitable new probe, a recombinant
mouse Galectin-3 fused with Renilla luciferase (RLuc-mGal-3),
associated or not with nanoparticles, to monitor the fate of extra-
cellular and circulating Gal-3 and its ligands in vitro and in vivo in a
gastric cancer model.

2. Material and methods

2.1. Animals

Eight-week-old male Balb/c nude mice were bred and housed at
the animal facility of IPEN (Nuclear and Energy Research Institute-
Brazil). The experiments were conducted following the relevant
laws and were approved by the local animal care committee (pro-
tocol number: 181/17).

2.2. Mammalian cell culture

Human gastric cancer cell line (MKN45 cells) transfected with
the empty vector pcDNA3.1 (MKN45-Mock) or the full length hu-
man ST6GalNAc-I containing vector (MKN45-ST6GalNAc-I) [25]
were grown in RPMI supplemented with 10% of fetal bovine serum,
50 mg/mL of gentamicin and 300 mgmL�1 of geneticin (Gibco, Life
technologies). Lonza Mycoplasma Detection Kit was used to
exclude mycoplasma contamination in cultured cells.

2.3. Expression and purification of RLuc-mGal-3

E. coli BL21-DE3 cells were transformed with the pET-28a
(þ)-RLuc-mGal-3 vector through heat-shock method [27] and
RLuc-mGal3 expression was tested under several conditions using
IPTG (Isopropyl b-D-1-thiogalactopyranoside e Sigma). RLuc-
mGal-3 purification was performed by two consecutive affinity
chromatography steps, sepharose-lactose (Sigma) and HisTrap™
(GE Healthcare) columns.

2.4. Hemagglutination assay

The lectin activity of purified RLuc-mGal-3was determinedwith
an hemagglutination assay using a 96 well round bottom micro-
plates, as described previously [26]. Briefly, RLuc-mGal-3
(3 mmol L�1) was added to mouse erythrocytes suspension in PBS
(2%) in the presence or absence of a sugar hapten inhibitor (lactose)
or a sugar hapten non-inhibitor (sucrose), at different concentra-
tions (20, 40, 60 and 80mmol L�1).

2.5. Mass spectrometry (MALDI-TOF/TOF)

RLuc-mGal-3 molecular mass was determined using MALDI-
TOF/TOF mass spectrometer (ultrafleXtreme, BrukerDaltonics,
Bremen, DE) as previous described [27]. 1 mL of a solution of
acetonitrile 30% (TA 30, v:v) and trifluoroacetic acid (TFA) 0.1%
saturated with Sinapinic acid matrix was used to dilute (1:1, v:v)
the purified RLuc-mGal-3 (1.9mg/mL).

2.6. Poly-lactic acid nanoparticles (PLA-NPs) containing RLuc-
mGal-3

PLA-NPs were made using the double emulsion solvent evapo-
ration method with the poly-lactic acid (PLA) polymer according to
previously established protocols [28] were 1% polyvinyl alcohol
(PVA) was dripped into 100 mg of RLuc-mGal-3 containing PLA. The
mean size and the polydispersity index (PDI) of PLA-NP containing
RLuc-mGal-3 (NP-RLuc-mGal-3) were assessed using DLS (Dy-
namic Light Scattering).

2.7. RLuc-mGal-3 interaction with MKN45 cells

MKN45-Mock and MKN45-ST6GalNAc-I cells were incubated
with 1, 10, and 50 mg of RLuc-mGal-3 or NP-RLuc-mGal-3 for 2, 16,
and 24 h with or without lactose (100mmol L�1). Then, 6 nM of
ViviRen substrate (Promega Corporation) was added to the micro-
plates (10min at room temperature) and luminescence was
measured using the GloMax® Discover System (promega).

2.8. Assessment of RLuc-mGal-3 in vivo

MKN45 cells (1� 106) were subcutaneously inoculated in Balb/c
mice and tumor growth was followed for 3 weeks. Then, RLuc-
mGal-3 (100 mg) in the presence or absence of lactose
(100mmol L�1) was administered intratumorally in MKN45-
bearing mice. After 8 h, animals were anesthetized with iso-
flurane, ViviRen (0.295mmol L�1) was injected intratumorally and
bioluminescence was analyzed for 15min using the MSFX-Pro
equipment and Bruker Molecular Imaging software (Bruker Bio-
Spin Corporation).

2.9. Radio labeling of RLuc-mGal3

RLuc-mGal3 (150 mg) was conjugated with succinimidyl-6-
hydrazinopyridine-3-carboxylate (NHS-hynic, Future-Chem) and
then, 99mTcO4- solution (150 MBq) was added to RLuc-mGal3-
HYNIC. The radiochemical purity of RLuc-mGal3-HYNIC-99mTc
was determined by instant thin-layer chromatography-silica gel
(ITLC-SG, Agilent).

2.10. MicroSPECT/CT imaging

RLuc-mGal3-HYNIC-99mTc (37MBq)was injected intratumorally
in MKN45 tumor-bearing mice. After 2 h, SPECT data was recorded
followed by a CT scan using the Albira microPET/SPECT/CT imaging
system (Bruker Biospin Corporation). Images were reconstructed
with Albira software and processed with PMOD software (PMOD
Technologies).

2.11. Statistical analysis

The results were expressed as the mean± SD of at least three
independent experiments. Statistical analysis were done using the
GraphPad Prism 6.0 software and p< 0.05 used as reference for
statistical significance.

3. Results

3.1. Production of soluble RLuc-mGal-3

The success of the recombinant RLuc-mGal-3 production and
purification, using a sepharose-lactose and nickel resins, was
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evaluated by SDS-PAGE where a single band of approximately
66 kDa was detected (Fig. 1). The cloning strategy, electrophoretic
analysis and standardization of procedures to obtain the soluble
recombinant RLuc-mGal-3 can be found in Supplementary Fig. S1.
The capacity of RLuc-mGal-3 binding to sepharose-lactose resin is
an evidence that its carbohydrate recognition domain (CRD) is
active.

3.2. Molecular mass determination and hemagglutinating activity
of RLuc-mGal-3

The RLuc-mGal-3 accuratemolecular weight was observed atm/
z 65,870.95 at MALDI-TOF/MS analysis (Fig. 2A). Purified RLuc-
mGal-3 effectively promoted erythrocytes agglutination in a
lactose-dependent manner (Fig. 2B), confirming that the lectin
property of Gal-3 was preserved (Fig. 1A).

3.3. Cell-binding activity of RLuc-mGal-3

MKN45-ST6GalNAc-I cells presented a significant decrease of
RLuc-mGal-3 binding sites compared to MKN45-Mock cells
(Fig. 3A), which agrees with previous report [25]. Then, NP-RLuc-
mGal-3, with an average size of 188 nm (Fig. 3B and C) and low
PDI (0.06) indicating a homogeneous size distribution, was added
to MKN45-Mock cells for 2 and 16 h showing increased binding
ability to tumors cells when compared to RLuc-mGal-3 (Fig. 3D).

3.4. In vivo binding activity of RLuc-mGal-3

To evaluate RLuc-mGal-3 glycan binding ability to cancer cells
in vivo, we subsequently intratumorally injected 100 mg of RLuc-
mGal-3 in the presence or absence of lactose in MKN45-bearing
mice. Eight hours post injection, the Renilla substrate (ViviRen)
was intratumorally injected and a robust luminescence signal was
detected in the tumor area. Interestingly, lactose was able to reduce
the signal dramatically (Fig. 4A). Likewise, the intratumoral injec-
tion of RLuc-mGal3 radiolabeled with 99mTc demonstrated the
ability of Gal-3 to bind to the tumor site in a carbohydrate depen-
dent manner (Supplementary Fig. S2 and Fig. 4B and C). Altogether
our data indicate that RLuc-mGal3 can be a valuable tool to study
the role of galectin-3 in vivo.

4. Discussion

Galectin-3 is a multifaceted glycan-binding protein whose bio-
logical functions and biomedical applications make this molecule a
target for basic/clinical investigations and for the development of
theranostic tools. In this context, the use of Galectin-3 probes, for
Fig. 1. SDS-PAGE of RLuc-mGal3 two-step-purification procedure. (A) Lactose affinity. Lanes
collected samples from 150mmol L�1 imidazole elution; lanes 5 to 8, collected samples fro
molecular imaging approaches have gained great interest and
attention by the scientific community. Bioluminescence provides a
substantial advantage over fluorescence and radiolabeled probes
which are widely used within living cells or organism because of
the extreme specificity of its signal, low-cost and the absence of
ionizing radiation. However, the engineering of recombinant pro-
teins with Luciferase or Renilla, still poses a biotechnological
challenge. In this work we generated a novel recombinant biolu-
minescent chimeric galectin-3 (RLuc-mGal-3), in a soluble or
adsorbed to nanoparticles form, which showed a high capacity to
bind in vitro and in vivo cancer cells.

RLuc-mGal-3 was expressed as a soluble and active molecule in
the cytoplasm of the well-established strain E. coli BL21 (DE3) [29].
Cytoplasmic expression is fast, simple and provides a huge amount
of protein, making this system inexpensive and reproducible [30].
An homogeneous preparation of RLuc-mGal-3 could be achieved
after a double-affinity chromatography purification, using both the
carbohydrate binding activity [31] and nickel affinity chromatog-
raphy through hexa-histidine tag, mainly used for RLuc fused
proteins purification [32].

Gal-3 is present as a monomer in solution and can form oligo-
mers in a concentration dependent manner through its N-terminal
domain [3,33,34]. In this work, the chimeric RLuc-mGal-3 was
intentionally designed to preserve Gal-3 CRD in order to exploit the
lectin properties of Gal-3. Interestingly, RLuc-mGal-3 exhibited
hemagglutinating activity through a sensitive-lactosemanner, even
though its N-terminal domain was fused to Renilla luciferase. This
data suggests that RLuc-mGal-3 is able to form oligomers in solu-
tion, sincewe have tested RLuc-mGal-3 concentrations greater than
20 mgmL�1, a critical concentration for Gal-3 self-association [34].
Others galectin-3 chimeric molecules showed preservation of their
lectin activities regardless of their oligomeric state [19]. Ochieng
and co-workers 1998 [35] described that the Pro-Gly-Tyr motifs,
located between N- and C-terminal, are associated with Gal-3
oligomerization. Considering these observations, we suggest that
RLuc-mGal-3 was able to induce hemagglutination due to the fact
that Pro-Gly-Tyr motifs could interact among molecules, forming
oligomers, and the RLuc portion did not cause steric hindrance.

The Gal-3 chimeric molecules reported so far did not lose their
ability to bind to their targets [19] and therefore, its use have been
explored by several researchers. For example, Gal-3 has been
expressed as a fusion-protein using green fluorescent protein [36]
and alkaline phosphatase [20] to investigate its tissue distribution
and binding patterns in several biological scenarios. Still, to date, no
reports have been found on the cloning and expression of recom-
binant soluble and active forms of Gal-3 fused to a bioluminescent
molecules such as Renilla luciferase, an enzymewhich catalyzes the
oxidation of coelenterazine, generating a blue light of 480 nm [37].
1 to 8 collected samples from 100mM lactose elution. (B) Nickel affinity. Lanes 1 to 4
m 250mmol L�1 imidazole elution. MM, protein molecular weight markers.



Fig. 2. MALDI-TOF/MS and hemagglutination analysis of purified RLuc-mGal-3. (A) Recombinant RLuc-mGal-3 exhibited a molecular weight 65,870.95 Da. (B) RLuc-mGal-3
(3 mmol L�1) was incubated with different concentrations of lactose and sucrose (20, 40, 60, and 80mmol L�1) and mouse red blood cells a final concentration of 2%.

Fig. 3. Cell-binding activity of RLuc-mGal-3. (A) 2� 103 MKN45-Mock or MKN45-ST6GalNAc-I were incubated with 1, 10 and 50 mg of RLuc-mGal-3 in the presence or absence of
lactose (100mmol L�1). ViviRen substrate (6 nM) was added to each well and the luminescence was read. (B) Polydispersity index PDI and diameter (Z) values of NP-RLuc-mGal-3.
(C) NP-RLuc-mGal-3 size distribution. (D) 2� 103 MKN45-Mock and MKN45-ST6GalNAc-I were incubated with 10 mg of RLuc-mGal-3 or NP-RLuc-mGal-3 for 2 or 16 h. ViviRen
substrate (6 nM) was added to each well and the luminescence was read. A and D - Results are expressed as the mean RLU (relative luciferase units) ± SD, ****p < 0.0001.

T.C. De Leo et al. / Biochemical and Biophysical Research Communications 521 (2020) 674e680 677
The absence of mammalian endogenous luciferases makes this
molecule a suitable probe for in vitro and in vivo cell assays [38].
Many authors have been taking advantage of the low cost, high
sensitivity and easy manipulation that characterizes biolumines-
cence as a suitable choice for in vivo and in vitromolecular imaging
[21,32,39].

Based on data described by Lee and colleagues [40], we used the
nanotechnology approach to improve the capacity of RLuc-mGal-3
binding on cell surface, consequently enhancing the signal ratio and
sensitivity of this probe. Thus, we prepared poly-lactic acid nano-
particles conjugated with RLuc-mGal-3 which exhibited greater
binding capacity to tumor gastric cells than RLuc-mGal-3 in
solution, possibly due to the higher number of exposed RLuc-mGal-
3 at nanoparticles surface as reported using antibodies [40].

It is well-known that Gal-3 is involved in several pathological
conditions and Gal-3-ligand inhibitors can prevent unwanted
events promoted by Gal-3 [41e43]. For instance, Gal-3 and its
binding pairs (Gal-3bp) play critical roles in the development of
venous thrombosis (VT) and elevated circulating Gal-3bp is asso-
ciated with acute VT [44]. Another research group analyzed,
comparatively, bronchoalveolar lavage fluid from asthmatics and
healthy patients and detected different profiles of Gal-3 and Gal-8
ligands correlated with pathophysiological parameters of asthma
[45]. Then, we suggest that unhealthy conditions associated with



Fig. 4. RLuc-mGal3 binds to tumor in vivo in a carbohydrate-dependent manner. (A) Luminescent image of MKN45 tumor-bearing mice 8 h after the intratumoral injection of RLuc-
mGal-3 (100 mg) in the presence or absence of lactose (100mM). Images were taken immediately after the intratumoral administration of Renilla substrate (ViviRen) and were
acquired for 15min at the left side position. (B) Contiguous transaxial SPECT/CT section of MKN45 xenografts bearing mice 2 h after RLuc-mGal3-HYNIC-99mTc intratumoral in-
jection. (C) The mean value of RLuc-mGal3-HYNIC-99mTc uptake by the tumor 2 h after intratumoral injection.
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differential expression of Gal-3 ligands can be non-invasively,
in vitro and in vivo, assessed by RLuc-mGal-3, including cancer. In
addition, our findings can be used as basis for future studies on the
development of potential Gal-3 inhibitors. In this work, we
analyzed whether the interaction between RLuc-mGal-3 and can-
cer cells occurs in a carbohydrate recognition manner. For this
purpose, we performed inhibition assays using an specific hapten-
sugar (lactose) or ST6GalNAc-I-overexpressing gastric cancer cells
which expressed lower levels of Gal-3 carbohydrate ligands [25]. As
expected, both strategies showed the involvement of Gal-3 CRD on
the cell cancer recognition by RLuc-mGal-3. The intratumoral in-
jection of RLuc-mGal3 and RLuc-mGal3-99mTc showed that Gal-3 is
able to bind in vivo to the microenvironmental tumor site in a
carbohydrate dependent manner. These data suggested that RLuc-
mGal3 could be a promising tool to study the glycobiology of
several illnesses in vivo.

In summary, we generated a novel recombinant chimeric pro-
tein, RLuc-mGal-3, which exhibit lectin and bioluminescent fea-
tures. This molecule showed a high capacity to bind cancer gastric
cells MKN45, which was enhanced by coupling RLuc-mGal-3 to
Poly-lactic acid nanoparticles. Also, RLuc-mGal-3 recognizes
galectin binding pairs on tumor surface using mouse model of
gastric cancer. Based on these results, we consider that RLuc-mGal-
3 might be a new suitable tool applicable in non-invasive studies
related to Gal-3 fate and binding pairs in many pathophysiologic
conditions.
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