i TR
LN
L e ol

1of'l

Hierarchical expansion method in the solution of

the Navier-Stokes equations for incompressible
fluids in laminar two-dimensional flow

E.L.L. Cabrai* a’ G. Sabundjian b

e University of Sao Paulo, Mechanical Engineering
Department, Sao Paulo, SP 05508-900, Brazil

b Nuclear Energy Research Institute, Reactor
Department, Paulo, SP 05508-900, Brazil

|___
ABSTRACT

This work presents a hierarchical expansion method
applied in the solution of the Navier-Stokes equations
for incompressible fluids in laminar two-dimensional
flow. The expansion functions used are based on
Legendre polynomials, adjusted in such a way that the
order of the expansion can be adjusted to the
necessary order. The results show the capability of the
method to yield accurate results.

Keywords: Finite element, Petrov-Galerkin
formulation, Navier-Stokes equation, Hierarchical
expansion functions, Incompressible fluid

*Corresponding author. Tel.: +55 (11) 3818-5565;
Fax: +55 (11) 3813-1886; E-mail: elcabral@usp.br

PRODUCAO TECNICO CIENTIFICA

DO IPEN

DEVOLVER NO BALCAO DE

EMPRESTIMO

25/06/01 16.



795

Hierarchical expansion method in the solution of the
Navier—Stokes equations for incompressible fluids in laminar
two-dimensional flow

E.L.L. Cabral **, G. Sabundjian®

ars

University of Sdo Paulo, Mechanical Engineering Depariment,

Sdo Paulo, SP 05508-900, Brazil
® Nuclear Energy Research Institute, Reactor Department,
Sdo Pauio, SP 05508-900, Bragil

Abstract

This work presents a hierarchical expansion method applied in the solution of the Navier-Stokes equations for
incompressible fluids in laminar two-dimensional flow. The expansion functions used are based on Legendre polynomials,
adjusted in such a way that the order of the expansion can be adjusted to the necessary order. The results show the

capability of the method to yield accurate results.

Incompressible fluid

1. Introduction

The objective of this work is to develop and to apply the
method of hierarchical expansion, proposed by Zienkiewicz
and Morgan [1], in the solution of the two-dimensional
Navier—Stokes equations, for incompressible fluids in lami-
nar flow. This method is based on the finite eilement method
using the Petrov—Galerkin formulation [2]. All variables
describing the fluid flow are expanded in nearly hierarchi-
cal functions based on Legendre polynomials. This method
has some advantages over other numerical schemes as is
described in the following sections.

2. Counservation equations (2D)

The equations governing the fluid dynamics are conti-
nuity, momentum and energy equations. In this work, the
method proposed by Chorin [3] is used for the treatment of
the coupling between pressure and velocity. The following
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equations are used with this method:
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where o is the fluid specific mass, ¢ is the time, Af is
the time step, # and w are the velocity components in
the x and z directions, respectively, #* and w* are the
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intermediate values of the velocity components in the x and
z directions respectively, p is the fluid pressure, w is the
fluid dynamic viscosity, and the superscript £ — At refers to
the variables calculated at the previous time step. To make
the nomenclature easier, no superscript is used to denote
the variables at the present time.

Assumjng constant fluid properties, the energy equation
written in terms of the temperature for Cartesian coordi-
nates in two dimension is the following:
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where T is the temperature, £ is the thermal conductivity
and ¢, is the specific heat at constant pressure.

3. Mathematical development of the conservation
equations for a single element

A rectangular structure mesh is used to divide the flow
domain into nodes. Although this is the simplest form of
grid it is enough to show the capabilities of the proposed
method.

For each node, Egs. (1), (2), (3), (4), (5) and (6) are
multiplied by a weighting function and integrated. The
Green’s Theorem is used to simplify the diffusive terms in
Egs. (1), (3), (5) and (6).

The weighting function, P,, is based on the Petrov—
Galerkin formulation and it is given, according to Brooks
and Hughes [2], by:
where %, ; and w;; are, respectively, the average velocity
in the x and z directions in node i, j, and N,, is the mth
expansion function for node i, j.

For each node, the variables u*, w*, u, w, p and T, are
expanded in a series as follows:
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where the parameters u),, w). U, Wy, Py and T, are
the coefficients of the variables associated with the m™
expansion function for that node.

For example, this process applied to the pressure equa-

tion, Eq. (5), results in the following expression for node

i j:
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where Ax;; and Agz;; are the length of node i, j in the x
and z direction, respectively, £ and 5 are the node locally
space variables in the x and z dlrecuons respectively. This
expression represents a system of M equations, where M is
the total number of expansion functions used.

In matricial form, this system of equations is written as
follows:

Al/p =1/, (10)

where A%/ is the pressure equation matrix for node i, j,
which contains all the right hand side terms of Eq. (9), p
is the vector of the pressure expansion coefficients, and b/
is a vector for node i, j which contains the left hand side
terms of Eq. (9). For Eqgs. (1), (3) and (6), the coefficient
matrices and the left hand side vectors are functions of the
velocity expansion coefficients.

After applying this process for all equations at every
node of the mesh, a system of equations results which must
be solved interactively at each time step to calculate the
expansion coefficients.

4. Hierarchical functions

In the classic finite element method the expansion coef-
ficients are identified with the variables at specified loca-
tions. This identification has been widely followed in the
finite element literature and has the merit of assigning a
‘physical’ meaning to these coefficients. There is, however,
a great disadvantage in this practice. If it is desired to
change the order of the expansion, it is necessary to restart
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the problem due to the complete change of all expansion
functions involved [1].

In the case of the hierarchical expansion functions, the
expansion coefficients are not identified with the physical
variables at specific points of the mesh. In this case, the
coefficients are associated with the expansion functions,
which are adjusted in the rectangular nodes, defining coi-
ner, side and area functions. This association allows to start
the solution of a problem with a linear expansion and if
necessary during the solution process, to add new shape
functions to increase the order of expansion and to obtain
a more accurate solution. In this case, the expansion func-
tions do not change by adding or deleting new expansion
functions to change the order of the expansion. Thus, it is
not necessary to recalculate the matrices. Changing the or-
der of expansion without the need to restarting the problem
turns out to be the great advantage of this method.

The hierarchical expansion functions are based on Leg-
endre polynomials, which form a set of functions with
orthogonality properties. Due to the association of two
functions in each direction to form the two-dimensional
expansion functions, complete orthogonality is impossible
to achieve, but the main diagonal terms in the matrices are
dominant.

Fig. 1 shows four nodes and the parameters associated

with their corners, sides, and areas. In this figure, ¢/, are
the corner parameters associated with the corner (linear)
expansion functions, ¢;; , and on ;.¢ are the side parameters
associated with the side expansion functions, and ¢
are the area parameters associated with the area expansion
functions. The order of the approximation for the side and
afea expansion functions is up to the desired or necessary
degree.

Each corner parameter is connected to four elements
through four different expansion functions and each side
parameters is connected to two elements by two different
functions. The area parameters belong to a single element
only. The association of the comers and side expansion co-
efficients with adjacent elements guarantees the singularity
and the continuity of the solution at all node boundaries.

It should be observed that it is very easy to increase the
order of expansion locally to achieve a refinement in the
region where the parameters vary most rapidly and where
the approximation is therefore prone to the largest eitors.

5. Results

In order to validate the numerical method proposed in
this work, some well-known problems of the literature are
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Fig. 1. Four rectangular grid nodes and associated parameters.
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u=0, w=0

Table 1
Mean error between the calculated and experimental results for the velocity
Position x Mean error degree 1 Mean error degree 2 Mean error degree 3
{m) {%0) {%0) (%)
0.012 8.70 4.42 3.01
0.030 10.3 83 4.19
0.060 13.47 11.95 7.09
0.090 13.653 12.51 8.17
0.12 15.92 13.21 10.29
u=0,w=0 — x (m)
f ee] 0.0 0.012 0.030 0.060 0.0%0 0.12
— o— @ * ® ® & @
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Fig. 2. Backward-facing step geometry.

simulated. This paper presents the results of a backward-
facing step problem, additional results can be found in
Sabundjian [4].

For the accomplishment of this analysis, the experimen-
tal results obtained by Denham and Patrick [5] are used.
Fig. 2 shows the geometry of the problem. A course mesh
with 25 x 12 elements and expansion orders 1, 2 and 3 are
used. Fig. 3 presents graphical results for the velocity for
the case of third order expansion. Table 1 presents the mean
errors between the calculated and the experimental results.
As the expansion order increases, the calculated results are
closer to the experimental results. However, the differences
between the numerical and experimental results increase
with the distance from the inlet.

6. Conciusions

Based on the results obtained in the solution of the pro-
posed problems, it is possible to conclude that the method
of hierarchical expansion is suitable for solution of incom-
pressible fluid problems in two dimensions. The calculated
results are in good agreement with the experimental results.
The great advantage of the hierarchical expansion method
is the capacity to adapt the expansion order to the neces-
sary or desired value during the flow calculation, without
the necessity to restart the problem, as happens in the con-
‘ventional finite element method, or in the method of mesh
refinement.
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Fig. 3. Calculated results (third order expansion) and experimen-

tal results from Denham and Patrick experiment with Reynolds
=73 {5].
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