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ABSTRACT 

 
The safety of nuclear power plants is always a concern when this technology is considered as an option for 

power generation. The Software for Identification and Classification of Transients (SICT) was developed as a 

contribution for improving safety and performance of nuclear plants. It is based in neural networks using 

Self-Organizing Maps and its main purpose is to monitor reactor operation identifying and signalizing transients 

and accidents in real time. The development of this software had several phases and one of them was the 

demonstration of the capability of SICT to identify and classify transients in an experimental facility online. 

This demonstration was achieved using experiments in a thermal hydraulic facility, the Circuito 

Térmico #1 (CT1) in CDTN. SICT was trained to recognize different operational states possible in the 

installation before using experimental data acquired from CT1 instrumentation. SICT training was performed 

using results from simulations of steady states, normal and abnormal transients and accidents calculated using 

the RELAP5 code. Therefore another important point in the development process was to check how this 

particular artificial neural network, which was trained with simulation data, would perform when monitoring 

real experimental data obtained from the installation. This is an important issue since most accidental conditions 

in a nuclear reactor will never have experimental data available to train the network, which will have then to be 

trained with data provided by simulations. This paper presents the current status of SICT development and 

results achieved when experiments carried out in CT1 were monitored by SICT, which had been previously 

trained using simulation data. 

 

 

1. INTRODUCTION 
 

The safety of nuclear power plants and their operational availability are among the factors 

that must be improved in order to allow new projects to be accepted by the public and 

attractive to power utilities. SICT - Software for Identification and Classification of 

Transients - was developed as a tool that can contribute to improve the safety and reliability 

of Nuclear Power Plants (NPP) [1] through the identification and classification of its 

operational status, i.e., if it is in a steady state, transient or accident condition.  
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Baptista and Barroso [2] presented in 2003 a first viability study of a program to identify the 

operational status of a NPP using an Artificial Neural Network fed with around ten thermal 

hydraulic parameters obtained from the reactor. SICT is an evolution of this exploratory work 

and of that presented in 2007 [3]. It was based on a particular type of Artificial Neural 

Network (ANN) created by Kohonen, the Self-Organizing Maps (SOM) [4], whose main 

characteristic is the production of a low dimensional representation from the high 

dimensional input space after an unsupervised training. SICT was developed using an object 

oriented programming language, C++. 

 

An experimental program was planned and carried out in Circuito Térmico #1 (CT1) [5], 

which covers several different conditions of operation such as steady states, power changes, 

loss of cooling, pressurization and depressurization. The main goals of this experimental 

program were to demonstrate the capability of SICT to respond quickly enough to changes in 

operational conditions and most importantly to evaluate how this ANN performs using 

experimental data, which is usually associated with noise, considering that it was trained with 

data obtained from simulations with RELAP5, which is usually smooth without noise.  

 

SICT was developed to monitor the installation operation through a small number of thermal 

hydraulic parameters, such as temperature, pressure, flow and power. During its development 

better results have been obtained in identifying the installation operational status if some 

parameters derivative were also used jointly with the parameter set.  Some results of applying 

SICT to experimental data are discussed and compared with its use with simulation data 

showing its adequacy to its proposed goals. 

 

2. THE EXPERIMENTAL DATA 
 

The experiments were carried out in Circuito Térmico #1 – CT1 in Centro de 

Desenvolvimento da Tecnologia Nuclear – CDTN. A schematic drawing of CT1 with the 

physical quantities measuring points is shown in Fig. 1. The measured physical quantities are: 

10 temperatures along the primary and secondary loops, 2 pressures in primary, 2 mass flow 

rates in primary and in secondary and the power delivered to the test section. The recording 

of these parameters during the experiments form a data base that is available to use in SICT 

training and testing, although not all of them have been used in the versions developed so far. 

 

2.1. The Used Installation and the Experiments 
 

Table 1 shows a list of the twenty seven experiments comprising different operational 

conditions of CT1 that were carried out in order to provide a data base to check SICT 

performance after its training with simulation data. While some experiments, 1 to 5, 8 and 9, 

were carried out for validation and calibration of the circuit and of the data acquisition 

system, experiments 11 to 14 and 18 to 21 covered power changes of 10% in steps and in 

ramps of 30 s, 120 s and 240 s duration at atmospheric pressure. Experiments 17 and 22 to 27 

addressed pressure changes and loss of heat removal due to heat exchanger isolation or due to 

loss of secondary flow. Experiments 6, 7, 10, 15 and 16 dealt with abnormal power changes, 

larger than 20%, and accidental conditions. 

 

Experiment 3 allowed establishing the scheme used for data acquisition, i.e., each physical 

quantity measurement signal was acquired only once after a proper time to capture and 

convert it in the data acquisition card, in opposition to the technique of reading several times 
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a channel as fast as possible during a defined period and then making an average of the 

acquired data. Using this scheme it was possible to read and store a complete set of data 

measurements in less than 0.5 seconds corresponding to a frequency of 2 Hz.  

 

 

 
Figure 1.  Schematic of CT1 with the measurement points. 

 

 

 

Table 1.  Executed test matrix  
 

Identification Description 

Exp01_22Jun First experiment for CT1 commissioning. 

Exp02_09Jul Operational Accident: step of 15 instead of 1.5. 

Exp03_16Ago Definition of data acquisition scheme (loops, delays and grounding). 

Exp04_17Ago Temperature measurement calibration. 

Exp05_22Ago 
Temperature measurement calibration using grounding in order to check 

cross channel influence due to pump and power changes. 

Exp06_03Set Power change in steps and ramps and heat exchanger isolation. 

Exp07_05Set Power changes of 50% and 100%. Accident due to closed valve.  

Exp08_10 set T10 Temperature measurement calibration 

Exp09_11Set 
T10 Temperature measurement calibration. Safety measures implemented 

in data acquisition program. 

Exp10_14Set Power changes 0-5, 5-4, 4-1.5, 1.5-0. 

Exp11_01Out Power change in increasing steps of 10%. 
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 Table 1 – continuation 
Identification Description 

Exp12_02Out Power change in decreasing steps of 10%. 

Exp13_03Out Power change in increasing ramp of 10% in 30 s. 

Exp14_04Out Power change in decreasing ramp of 10% in 30 s 

Exp15_05Out 
Steady state at 90% and 50% to check bubbles observed at temperatures 

bellow saturation.  

Exp16_09Out Ramps of different powers and time gradients 

Exp17_10Out Depressurization 

Exp18_23Out Power change in increasing ramp of 10% in 240 s. 

Exp19_25Out Power change in increasing ramp of 10% in 120 s. 

Exp20_26Out Power change in decreasing ramp of 10% in 120 s. 

Exp21_03Nov Power change in decreasing ramp of 10% in 240 s. 

Exp22_15Dez Steady state, pressurization, depressurization and secondary pump off 

Exp23_22Dez 
Secondary pump off with pressure; Depressurization;  

Power changes in steps and ramps at different pressures.  

Exp24_24Dez Power change in increasing steps at increasing pressure 

Exp25_26Dez Opening and closing of pressurizer valve.  

Exp26_28Dez Turning off primary and secondary pumps with different pressures. 

Exp27_29Dez 
Opening and closing of pressurizer valve with heat exchanger bypass 

opened  

 

 

 

2.2. The Measured Signal and its Derivatives 
 

The measured values of these physical quantities show different characteristics for each 

group of them. The measurement of constant temperatures showed a variation of 4 values, as 

can be observed in Fig. 2, where the four acquired temperature values are 24.81 
o
C, 25.09 

o
C, 

25.38 
o
C and 25.66 

o
C. Considering that the time interval between two adjacent points is 

around 0.5 s, the measurements of a constant temperature during the experiments show a 

derivative in the range ±1.5 
o
C/s.  

 

Pressure measurements showed a dispersion similar to that of the temperatures, as can be 

observed in Fig. 3, where the values for a steady pressure varied between 0.4255 MPa and 

0.4269 MPa leading to derivatives in the range ±0.025 MPa/s.  

 

Fig. 4 shows a sample of mass flow rate measurement of a steady flow varying from 

0.5875 kg/s to 0.6411 kg/s leading to derivatives in the range ±0.07 kg/s. Mass flow rate is 

the physical quantity, which measurement shows the largest dispersion, however since the 

mass flow rate usually does not change significantly during operation, neither in the NPPs, its 

derivative has not been used in SICT. 

 

Measurements of a constant power perform like the sample shown in Fig. 5, where the 

acquired values varies between 51.915 kW and 53.944 kW leading to derivatives in the range 

±3.4 kW/s. 
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 Figure 2.  Sample of temperature Figure 3.  Sample of pressure  
 measurement. measurement. 
 
 

 

   
 Figure 4.  Sample of mass flow rate Figure 5.  Sample of power  
 measurement. measurement. 
 

 

 

An evaluation of temperature evolution at test section outlet during a step power change of 

10% in experiment 11 of Table 1 shows that the temperature variation is around 6 
o
C in 35 s 

leading to a derivative of approximately 0.18 
o
C/s, as can be seen in Fig. 6 and Fig. 7 

respectively. Fig. 7 shows the difference between the derivative of experimental and RELAP5 

simulation data, making clear that it is meaningless to use the derivative of the experimental 

data to identify a given condition in SICT since the associated noise is larger than the value 

itself. The value of the derivative of the temperature in this step power change is around 

0.18 
o
C/s, as shown by the solid black curve from simulation (RLP), and this value is 

approximately the value of variation of a measurement of a steady temperature discussed 

previously. 

 

The derivatives of pressure and power show a similar behaviour making them unusable for 

identifying transients in SICT. Therefore in SICT the derivatives were calculated using a time 

interval of 20 s as described by eq. 1. Using the lagged derivatives calculated in this way, the 

values shown in Fig. 7 are transformed in those shown in Fig. 8, where can be observed a 

good agreement between the derivative of the temperatures from the experiment with that 

from the simulation.  
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Fig. 9 shows the lagged derivative of the temperature at test section outlet during a power 

change of 10% in a ramp of 240 s and again there is a good agreement between the 

derivatives from simulation and experimental data. Similar behaviour is observed for the 

lagged derivatives of pressure and power making viable the use of lagged derivatives of 

temperatures, pressures and power in SICT for training and monitoring. 

 

 

 

   
 Figure 6.  Experimental and calculated Figure 7.  Derivative of experimental and  
 temperature at test section outlet. calculated temperature at test  
  section outlet. 
 

 

 

   
 Figure 8.  20 s Lagged derivative of Figure 9.  20 s Lagged derivative of  
 experimental and calculated temperature experimental and calculated temperature  
 at test section outlet (step). at test section outlet (ramp 240). 
 

 

 

3. SICT TRAINING 
 

The data base of RELAP5 simulations of CT1 to train SICT did not contain any real 

experiment simulation but a matrix of simulations that included all the power changes, i.e., in 

steps and ramps of 30 s, 120 s and 240 s. It included also several transients as turning off and 

on the secondary pump, isolation of the heat exchanger, pressurization and depressurization. 

This data base comprehended all experiments phenomena without reproducing any particular 

experimental conditions and evolution. In total 58 simulations were available and used for 

training of SICT. From this data base it was build one set of buffers to train SICT that 

addressed the steady states, power changes in steps and ramps and most of the transients that 

were simulated, but it did not contain the most abrupt changes. To address all this condition 
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this set contained 6498 buffers and the training with 8500 (2500 +6000) epochs took around 

10 hours. 

 

Ten physical quantities were selected to be part of the training input space of SICT for CT1: 

• six parameters were temperatures in fixed positions shown in Fig. 1: 

o inlet of test section (T1)  

o inlet of primary side of heat exchanger (T4), 

o outlet of primary side of heat exchanger (T5),  

o  middle path between heat exchanger and main pump (T6),  

o main pump outlet (T8) and  

o outlet of secondary of heat exchanger(T9), 

• two mass flow rates 

o  in the primary loop (Q1)and 

o  in the secondary loop (Q2), 

•  power in test section and  the 

• pressure in pressurizer (P1).  

 

These parameters form the input vectors or buffers, which were organized in buffers 

containing ten instances of each parameter sampled at intervals of six seconds. In this way 

one buffer had the history of the parameters evolution for 60 seconds. 

 

A scheme that enhanced the performance of SICT in identifying the transients was the 

addition of the derivatives of some parameters in the buffer. The use of the derivatives posed 

no problem in the beginning when just simulation data were used for testing the monitoring 

process, however using derivatives based on experimental measured data proved to be 

unfeasible, since they changed erratically due to noise in the signals. Therefore it was 

introduced in the training and in monitoring an approximated derivative calculated using the 

data from a given instant in relation to the data from 20 seconds earlier. 

 

Training buffers were then formed of 10 instances of the ten parameters jointly with the 

lagged derivatives of the power, pressure and of all temperatures. The input space for training 

the ANN was then represented by one buffer with 10 instances of 18 parameters composing 

one input vector with 180 dimensions.  

 

The input buffers were then used in the training process of SICT that updated the neuron 

weights according to the usual rule presented by Kohonen [4] that can stated by equation 2: 

 

  w�
��� =  w�

� +  η(i, p) ∗ (e� −  w�
� ) (2) 

 

In this equation η(i, p) represents a neighbourhood factor that decreases with the iteration 

number, i, and with geometric distance, p, between the input buffer, e� , and the neuron being 

updated, w�
� . 

 

Kohonen recognizes two phases in the training process: an ordering phase, where the buffers 

change the weights of many neurons even far from the winning neuron, and a convergence 

phase, where the buffers are associated with a neuron in the immediate neighbourhood of the 

winning neuron in previous iterations. Equation 2 is used along both phases.  

At the end of the convergence phase of training process each cell in the output space will be 

associated with a certain number of buffers. At this point it was introduced a neuron weight 
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optimization in the training, where the weights of each neuron were changed to an average of 

the buffers associated with it, i.e., the neuron weights were updated following equation 3: 

 

  w� = (∑ e�,�)/m!
�"�  (3) 

 

In equation 3, i is the index of the dimension of the input vector, e, and of the winning neuron 

weight vector, w, and m is the maximum dimension of the vector that in this case is 180. 

 

4. RESULTS  
 

Current version of SICT can work with different bi-dimensional geometric representations of 

the output space such as: 

• triangular network with triangular cells, 

• squared network with triangular cells, 

• squared network with squared cells,  

• hexagonal network with hexagonal cells and  

• hexagonal network with triangular cells. 

 

SICT can also produce a three-dimensional output in the form of a cube with squared cells in 

the faces. These three-dimensional networks have a particular characteristic: the fact that 

every cell has neighbours in each of it sides, while in the bi-dimensional networks the cells 

on their borders do not have neighbours in all of their sides; this means that the cells in the 

three-dimensional network are more homogeneous than in the bi-dimensional ones.  

 

A set of criteria was established in order to check if a SICT configuration obtained from a 

given training was able to perform its envisaged goal, i.e., identify and classify correctly in 

real time the operational state of a thermal hydraulic installation it is monitoring. These 

criteria were checked to analyse the results of monitoring of all simulations with RELAP5 

and of most relevant experiments. The defined criteria included: 

• inspection of the maximum distance evolution during training; 

• visual inspection of the clustering at the end of training 

• visual inspection of the activated neurons during monitoring; 

• visual inspection of activated neurons during similar transients; 

•  (buffer) input vector – winning neuron weights distance during monitoring; 

• neurons activated by transients must be different from those activated by steady 

states; 

• neurons activated by increasing power changes must be different from those activated 

by decreasing ones; 

• identify correctly all inspected transients and steady states and 

• neurons activated by steady state must be the same for similar conditions independent 

of the path used to get to this condition. 

 

The training of SICT for CT1 was carried out using 2500 epochs for the ordering phase and 

6000 for the convergence phase followed by the averaging processes just described. The 

evolution of the maximum distance of a winning neuron weights to the associated input 

buffer in a given epoch is one measure of the efficiency of the training process. Fig. 10 and 

Fig. 11 provide the information to evaluate one of the listed criteria. Fig. 10 shows a typical 

evolution of maximum distance during the ordering phase and Fig. 11 the evolution during 
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the convergence phase. These figures show that both phases of the ordering implemented in 

SICT as well as their selected parameters are performing correctly. 

 

 

 

   
 Figure 10.  Evolution of maximum Figure 11.  Evolution of maximum  
 distance during the ordering phase. distance during the convergence phase. 
 

 

 

Fig. 12 shows the code to understand the clustering obtained at the end of training process 

that is shown in Fig. 13 for a hexagonal output map and in Fig 14 for a three-dimensional 

cubic output. Fig. 13 and Fig. 14 allow confirming that the training process satisfied the 

clustering criteria of similar operational states in the output space of SICT specified 

previously. 

 

One of the most important results that SICT provides during the monitoring is the (buffer) 

input vector to winning neuron weight distance, which indicates how good is the 

identification done by SICT of the installation. Fig. 15 shows the evolution of this distance 

for a simulation that started with a jump from zero power to 100% in 0 s, changed the power 

at 3000 s from 100% to 90% in a step and changed again from 90% to 80% at 6000 s. SICT 

had not been trained for power changes higher than 20% and the comparison of the high 

value of the distance in the first 1000 s in Fig. 15, which corresponds to the 0-100% power 

change, compared to the lower values after 3000 s clearly indicates that SICT does not know 

these initial conditions. This mechanism can be used to avoid accepting false identification 

done by SICT when it does not really recognize a certain condition. 

 

Fig. 16 shows that the distances during a step power change from 40 kW to 50 kW for both 

experimental data and simulation data are very similar. Due to this result that was also 

observed in many other cases it could be concluded that SICT is capable of identifying the 

conditions occurring in CT1 through monitoring of real data even having been trained with 

noiseless simulation data. The curves show also that for slow conditions, as those of the 

steady state before 0 s in Fig. 16, the distance is lower than for transients and accidents.  
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Figure 12.  Colors used to identify cells associated characteristics and their clustering
 

 

 

 Figure 13.  Clustering view
 hexagonal network
 at the end of training
 

 

Legend 

SSD --- Steady state (from a 

decreasing power change)

SSU --- Steady state (from a 

increasing power change)

DD ---- Power change, step down

DU ---- Power change, step up

RxxD - Power change, ramp of xx 

seconds down

RxxU - Power change, ramp of xx 

seconds up

PRZ --- Pressurization

DPZ -- Depressurization

RFR -- Cooling Recovery

PRF --- Loss of cooling

ITC --- Heat exchanger isolation

DBS -- Secondary pump off

LBS --- Secondary pump on

-------------------------------------------

_H – index for High Power (>50%)

_L – index for Low Power (<

_# -  1, 3 or 5 are pressure indexes

 

Colors used to identify cells associated characteristics and their clustering

 
Clustering view of a  Figure 14.  Clustering view of a 

network cubic network 
of training  at the end of training

Legend  
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decreasing power change) 
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increasing power change) 
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Power change, ramp of xx 
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Pressurization 

Depressurization 

Cooling Recovery 

Loss of cooling 
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index for High Power (>50%) 

index for Low Power (<50%) 
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Clustering view of a  

cubic network  
at the end of training 
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 Figure 15.  Buffer – winning neuron  Figure 16.  Buffer – winning neuron  
 distance for decreasing power change distance for power change in step 
 in step. 
 

 

 

5. CONCLUSIONS 
 

The Software for Identification and Classification of Transients (SICT) was developed using 

C++ with the goal of identifying the operational conditions of a nuclear power plant, i.e., 

identify if condition of operation are those of a steady state, a transient or an accident.  

 

The training process of SICT was carried out using data from CT1 simulations with 

RELAP5. These simulations comprehended some experiments and 58 simulations of series of 

transients that form a simulation data base. For the evaluation of SICT performance in an 

actual installation experiments were conducted and recorded in CT1 comprising steady states, 

transients and even accidents. The experimental and the simulation data bases are available 

for future investigation in this field. 

 

In order to evaluate SICT performance there were defined a set of criteria that was used in the 

results from training and from monitoring results from experiments and from simulations. 

The evaluation of several configurations of training parameter and of geometric output maps 

showed that was possible to obtain SICT versions that satisfied the established criteria. 

 

The results showed that although SICT is trained with noiseless data from simulation it can 

perform well with typical measured data like those from CT1.  
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