

PHILE ACCESS DIRIGUCH 2013

Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals

I. A. A. Terra, L. J. Borrero-González, J. M. Carvalho, M. C. Terrile, M. C. F. C. Felinto, H. F. Brito, and L. A. O. Nunes

Citation: Journal of Applied Physics **113**, 073105 (2013); doi: 10.1063/1.4792743 View online: http://dx.doi.org/10.1063/1.4792743 View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/113/7?ver=pdfcov Published by the AIP Publishing

[This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP: 200.136.52.138 On: Tue, 10 Dec 2013 14:04:30

Spectroscopic properties and quantum cutting in Tb³⁺–Yb³⁺ co-doped ZrO₂ nanocrystals

I. A. A. Terra,¹ L. J. Borrero-González,^{1,a)} J. M. Carvalho,² M. C. Terrile,¹ M. C. F. C. Felinto,³ H. F. Brito,² and L. A. O. Nunes¹

¹Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil ²Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900 São Paulo, SP, Brazil

³Instituto de Pesquisas Energéticas e Nucleares, Av. Prof. Lineu Prestes, 2242, 05508-000 São Paulo, SP, Brazil

(Received 19 November 2012; accepted 6 February 2013; published online 21 February 2013)

Ultraviolet-visible to near-infrared quantum cutting (QC) materials are a promising tool to enhance the efficiency of conventional crystalline silicon solar cells. The spectroscopic properties of $Tb^{3+}-Yb^{3+}$ co-doped ZrO₂ nanocrystals are presented, and the QC mechanisms in these nanocrystals are investigated. The materials were fabricated using the sol gel method and characterized using X-ray powder diffraction, X-ray absorption near edge structure, and luminescence spectroscopy. The incorporation of Yb³⁺ ions into the host induced a crystalline phase change of ZrO₂ from monoclinic to tetragonal to cubic symmetry and influenced the Tb valence state. The Tb³⁺ visible emission, excitation intensity (monitored by the Tb³⁺:⁵D₄ emission), decay time of the Tb³⁺:⁵D₄ emitter level, and down-conversion (DC) emission intensity increased with Yb³⁺ concentration. Furthermore, a sublinear dependence of the DC intensity on the excitation power at the Tb³⁺:⁵D₄ level indicated the coexistence of two different QC mechanisms from Tb³⁺ \rightarrow Yb³⁺. The first one is a linear process in which one Tb³⁺ ion transfers its energy simultaneously to two Yb³⁺ ions, known as cooperative energy transfer, and the second one is a non-linear process involving an intermediated virtual level in the Tb³⁺ ion. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792743]

I. INTRODUCTION

Developing a quantum cutting (QC) material that efficiently converts energy from the ultraviolet (UV)-visible (VIS) region of the solar spectrum to the near-infrared (NIR), where a single-junction crystalline silicon solar cell has a strong spectral response, presents a great challenge to fabricate more efficient photovoltaic devices. Shockley and Queisser¹ reported a theoretical efficiency limit of $\sim 30\%$ for a single-junction crystalline silicon solar cell. The spectral mismatch of the solar spectrum and the band gap at $\sim 1.1 \text{ eV}$ of crystalline silicon are the major issues that restrict this efficiency. The photons with energies smaller than the band gap are not absorbed (transmission losses), and a large portion of the energy of the photons with energies exceeding the band gap is lost as heat of the charge carries (thermalization losses).² Trupke *et al.*³ reported that the thermalization losses could be minimized when a QC material is placed in front of a single-junction crystalline silicon solar cell, achieving a conversion efficiency of up to 38.6%. Recently, several authors have studied the use of rare-earth ion doped materials as quantum cutters to improve this efficiency. $^{\bar{4}-6}$ Ion couples such as $Nd^{3+}-Yb^{3+}$, $Pr^{3+}-Yb^{3+}$, $Er^{3+}-Yb^{3+}$, and $Tb^{3+}-Yb^{3+}$, appear promising for this purpose⁶⁻¹⁶ because the Nd³⁺, Pr^{3+} , Er^{3+} , and Tb^{3+} ions absorb in the UV-VIS region and then transfer the energy to Yb³⁺ ions that emit in the NIR at ~ 1000 nm. The combination of Tb³⁺ (sensitizer)

and Yb³⁺ (activator) ions is particularly interesting because the Tb³⁺:⁵D₄ \rightarrow 7F_6 transition occurs at 488 nm, approximately twice the energy of the Yb³⁺:²F_{7/2} \rightarrow $^7F_{5/2}$ absorption.

Quantum efficiencies higher than 100% have been reported in the literature for the Tb³⁺-Yb³⁺ system.^{5,13–15,17–27} However, the QC mechanism involved in this system is still debated. Some authors¹³ have found that the down-conversion (DC) intensity has a linear relation to the excitation power in a double logarithmic plot with a slope of 1, while others²⁷ have observed a sublinear relation with a slope of 0.49. Interestingly, Strek et al.²⁸ were able to control the slope through the temperature; they observed a slope of 0.45 at 300 K and 0.88 at 77 K. Based on these reports, the QC may be either a linear or a sublinear process, indicating different energy transfer mechanisms responsible for the QC in the $Tb^{3+}-Yb^{3+}$ system. More recently, Duan *et al.*²⁹ attempted to elucidate the origin of the QC in NaYF₄: Tb^{3+} , Yb^{3+} powder samples by invoking two different energy transfer mechanisms from Tb^{3+} to Yb^{3+} to explain the observed linear and sublinear slopes.

Zirconia (ZrO₂) is an excellent material for use in optics owing to its hardness, optical transparency, thermal and chemical stability, high refractive index (2.15–2.18),^{30–32} and wide band gaps of 5.0 and 5.8 eV for monoclinic-ZrO₂ and tetragonal-ZrO₂, respectively.³³ The stretching frequency of the Zr-O bond is approximately 470 cm^{-1} , which is much lower than that of Al-O (870 cm^{-1}) or Si-O (1100 cm^{-1}).³⁴ This low energy phonon opens up the possibility of efficient luminescence of active ions incorporated

^{a)}Author to whom correspondence should be addressed. Electronic mail: lborrero@ursa.ifsc.usp.br.

into the ZrO_2 matrix. In addition, zirconia displays a wellknown polymorphism with three different crystalline structures: cubic (*c*-ZrO₂), tetragonal (*t*-ZrO₂), and monoclinic (*m*-ZrO₂).³⁵ The crystalline structure of ZrO₂ is also known to change with the thermal treatment and with the incorporation of rare-earth ions.³⁶

The purpose of this paper is to investigate the spectroscopic properties and the quantum cutting mechanisms in $Tb^{3+}-Yb^{3+}$ co-doped ZrO₂ nanocrystals. The samples were produced using the sol-gel method. They were characterized using X-ray powder diffraction (XRD), X-ray absorption near edge structure (XANES), electron spin resonance (EPR), and luminescence spectroscopy. As the Yb³⁺ concentration increased, the XRD measurements revealed a crystalline phase change of ZrO₂ from monoclinic to tetragonal to cubic. The XANES measurements revealed a change of the Tb valence state as Yb^{3+} was incorporated. The Tb^{3+} visible emission, excitation intensity (monitored via the Tb³⁺:⁵D₄ emission) and the decay time of the Tb^{3+} .⁵D₄ emitter level increased with Yb³⁺ concentration. In addition, DC emission was observed at high Yb³⁺ concentration. Finally, a sublinear dependence of the DC intensity on the excitation power at the Tb³⁺:⁵D₄ level indicated the coexistence of two different QC mechanisms for $\text{Tb}^{3+} \rightarrow \text{Yb}^{3+}$.

II. EXPERIMENTAL DETAILS

A. Material synthesis

A series of ZrO_2 :1Tb + *x*Yb co-doped materials with $(x=0, 1, 5, 10, \text{ and } 20 \text{ mole-}\% \text{ and a } ZrO_2$:1Tb+20 Gd material were prepared using a one-step sol-gel method.³⁶ The as-prepared materials were thermally treated for 5 h at 1000 °C to obtain the co-doped ZrO_2 nanocrystals, as described previously.^{37,38}

B. Material characterizations

The thermally treated samples were structurally characterized using XRD, performed on a Rigaku-Miniflex II diffractometer with $CuK_{\alpha 1}$ radiation (1.5406 Å) in the 2θ range of 20–70°.

The valence state of Tb was evaluated by performing XANES spectroscopy on the ZrO_2 :1 Tb + xYb (x = 1, 5, 10, and 20 mole-%) as-prepared and thermally treated samples using the beam line XAFS1 at Laboratório Nacional de Luz Sincrotron (LNLS) in Campinas, Brazil. The data were collected in the fluorescence mode over the Tb L_{III} edge. A freshly annealed terbium oxide (Tb₄O₇) was used as the reference sample.

In addition, EPR spectra of the ZrO_2 :1 Tb + xYb samples (x = 1, 5, 10, and 20 mole-%) were recorded using a Bruker Ele Xsys, E 580 X band (9 GHz) spectrometer to confirm the change of the Tb valence with the Yb³⁺ incorporation.

Photoluminescence (PL) spectra in the visible and infrared were obtained using an HeCd laser (Kimmon/IK5652R-G) at 325 nm and an Argon laser at 488 nm (Spectra physics 166) as excitation sources. The luminescent signals were dispersed by a monochromator (0.3 m, Thermo Jarrel Ash/82497), detected by either a photomultiplier tube (Hamamatsu PMT/ R928) or an InGaAs detector and amplified by a lock-in.

Photoluminescence excitation (PLE) measurements in the 460–510 nm range (monitoring at 544 nm) were made on an SPEX Fluorolog spectrofluorometer (0.22 m, SPEX/1680) equipped with an Xe-lamp as the excitation source and a PMT/R928 for detection.

Luminescence decay curves for the Tb^{3+} : ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ and Yb^{3+} : ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transitions were obtained using an optical parametric oscillator (OPO) (Surelite SLOP/Continumm) pumped by the third harmonic from an Nd: YAG laser (Surelite SLII-10/Continumm, 355 nm, 5 ns, 10 Hz). The luminescent signals of both Tb^{3+} and Yb^{3+} were dispersed by the monochromator (0.3 m). The PMT/R928 was used to detect the decay time of the Tb^{3+} and another photomultiplier tube (Hamamatsu/R632) was used to measure the decay curves of the Yb^{3+} . The signals were registered on a digital oscilloscope (TekTronix/TDS380). The decay times of both the Tb^{3+} : ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ and the Yb^{3+} : concentration.

The excitation power dependent measurements were carried out using an Argon laser at 488 nm (Spectra physics 166) in the range 50-200 mW, monitoring the DC emission from Yb^{3+} :²F_{5/2} \rightarrow ²F_{7/2} (at 980 nm).

All of the material characterizations were carried out at room temperature.

III. RESULTS AND ANALYSIS

A. XRD and XANES characterization

The crystalline structures of the ZrO_2 :1Tb+xYb annealed samples (x = 1, 5, 10, and 20 mole-%) were determined using XRD measurements, and the results are shown in Figure 1. For the ZrO₂:1 Tb+1 Yb material, the dominant structure is the monoclinic phase. However, owing to the incorporation of Yb³⁺ ions, the tetragonal (for 1 to 5 mole-% of Yb^{3+}) and cubic phases (for 10 to 20 mole-% of Yb^{3+}) are stabilized. Some authors have reported a crystalline phase change from monoclinic to tetragonal to cubic with RE^{3+} incorporation.^{39,40} The radii of RE³⁺ (0.985/CN:8 and 1.040 Å/CN: 8 for the Yb³⁺ and Tb³⁺ ions, respectively) are larger than the radius of Zr^{4+} (0.84 Å/CN:8):⁴¹ the incorporation of such ions induces expansion of the ZrO₂ lattice as well as the creation of oxide vacancies owing to charge compensation.¹¹ To avoid collapse of the structure, the lattice then stabilizes in the tetragonal or cubic phases.

The average crystallite sizes were calculated using the Scherrer equation,¹¹ and values in the 21–44 nm range were obtained for Yb³⁺ concentrations of x = 1 to 20 mole-%. This fact is attributed to varying cation concentrations in the precursor solution, leading to different hydrolysis rates for the different materials and consequent large variations in the agglomeration of the particles.

The XANES measurement is the most direct method of evaluating the valence change for rare earth ions.⁴² The XANES spectra of the Tb (L_{III}) absorption edge of the asprepared and annealed ZrO₂:1 Tb + xYb (x = 1, 5, 10, and 20 mole-%) samples were recorded. The normalized spectra for x = 1 and 20 mole-% are shown in Figure 2(a) for the

FIG. 1. XRD patterns of the ZrO_2 :1 Tb + *x*Yb annealed samples (*x* = 1, 5, 10, and 20 mole-%). The vertical bars indicate the standard ICDD, PDF data for the 36-0460 (monoclinic ZrO_2), 42-1164 (tetragonal ZrO_2), and 081-1550 (cubic ZrO_2) phases.

as-prepared samples and in Figure 2(b) for the annealed (5 h at 1000 °C) samples. The spectrum of the Tb₄O₇ (reference) sample is also shown for comparison. The reference spectrum has two peaks at 7510 and 7518 eV associated with the Tb³⁺ and Tb⁴⁺ valence states, respectively, in agreement with Tb₄O₇ spectra in the literature.⁴² In Figure 2(a), the asprepared samples show only the Tb³⁺ peak because all of the samples were synthesized using Tb³⁺ nitrate as the precursor. After annealing, Tb oxidation was observed at low Yb³⁺

FIG. 2. Normalized XANES spectra of the as-prepared (a) and annealed (b) ZrO_2 :1 Tb + xYb (x = 1 and 20 mole-%) materials. For comparison, the spectrum of the Tb₄O₇ material is also shown. The spectra were recorded on the Tb (L_{III}) edge.

concentration, promoting a Tb valence conversion from Tb^{3+} to Tb^{4+} . However, at high Yb^{3+} concentration, Tb oxidation is inhibited. This inhibition could be explained by the contribution of the oxygen vacancies generated by Yb co-doping, which must be accounted for in the redox chemistry of the Tb ion.

A decrease in the Tb⁴⁺ concentration with increasing Yb³⁺ concentration was confirmed by performing EPR spectroscopy on the ZrO₂:1 Tb+*x*Yb annealed samples (x = 1, 5, 10, and 20 mole-%) (results not shown here). These measurements indicated a Tb valence conversion from Tb⁴⁺ to Tb³⁺, in agreement with the XANES data.

The influence of crystalline structural changes and the Tb valence conversion on the luminescent properties of the ZrO_2 :1 Tb + xYb annealed samples will be analyzed in detail in Sec. III B.

B. Luminescence characterization

The energy level diagrams of the Tb^{3+} and Yb^{3+} ions are shown in Figure 3, along with the relevant optical transitions. Two different QC mechanisms from Tb^{3+} to Yb^{3+} are also shown.

The visible luminescence spectra of the ZrO₂:1 Tb + *x*Yb (x = 1, 5, 10, and 20 mole-%) annealed samples under 325 nm excitation are shown in Figure 4. The emission peaks, corresponding to the optical transitions (${}^{5}D_{4} \rightarrow {}^{7}F_{J}$) of the Tb³⁺ ion occur at approximately 490 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$), 544 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), 587 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$), and 622 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$). A bright white-blue luminescence centered at 500 nm is also observed for the ZrO₂:1 Tb + 1 Yb sample. The intensity of this broad-band luminescence was strongly suppressed with increasing Yb³⁺ concentration. This broadband luminescence of non-doped ZrO₂ was suggested to result from a Ti impurity in ZrO₂ in previous work.³⁷ The

FIG. 3. Energy level diagram of the Tb^{3+} and Yb^{3+} ions. The energy transfer mechanisms of the quantum cutting under Tb^{3+} excitation are shown. (1) CET and (2) energy transfer via intermediate virtual level.

FIG. 4. Visible emission spectra of the ZrO₂:1 Tb + *x*Yb annealed samples (*x*=1, 5, 10, and 20 mole-%) under excitation at 325 nm. The inset shows the peak emission intensity of the Tb³⁺:⁵D₄ \rightarrow ⁷F₅ transition, monitored at $\lambda_m = 544$ nm as a function of the Yb³⁺ concentration.

inset in Figure 4 shows an increase in the peak emission intensity at 544 nm as a function of the Yb^{3+} concentration, explained by an increase in the Tb^{3+} ion concentration.

PLE spectra are useful for investigating the absorption mechanism responsible for the Tb^{3+} -related emissions. Figure 5 shows the excitation spectra of the ZrO₂:1 Tb + *x*Yb annealed samples (x = 1, 5, 10, and 20 mole-%) excited with an Xe-lamp, monitoring the Tb^{3+} :⁵D₄ \rightarrow ⁷F₅ transition ($\lambda_m = 544 \text{ nm}$). The spectra clearly display a band centered at 485 nm related to the Tb³⁺ absorption structure from the ground energy level, ⁷F₆ to ⁵D₄. The intensity increases with Yb³⁺ doping, and this result confirms an increase of the Tb³⁺ ion concentration, in agreement with the XANES, EPR data, and the visible luminescence.

The luminescence decay times were obtained, and a correlation with the effect of increasing the Tb^{3+} concentration and crystal structure is demonstrated below.

Figure 6 shows the luminescence decay times of the ZrO_2 :1 Tb + *x*Yb annealed samples as a function of the Yb³⁺ concentration after excitation with a pulsed laser ($\lambda_{exc} = 355$ nm, 5 ns), monitoring the Tb³⁺:⁵D₄ \rightarrow ⁷F₅ transition at 544 nm. The decay time increases with the Yb³⁺

FIG. 5. PLE spectra of the ZrO₂:1 Tb + *x*Yb annealed samples (x = 1, 5, 10, and 20 mole-%) excited with an Xe-lamp, monitoring the Tb³⁺:⁵D₄ \rightarrow ⁷F₅ transition ($\lambda_m = 544$ nm).

FIG. 6. Luminescence decay times of the ZrO₂:1 Tb + xYb annealed samples as a function of the Yb³⁺ concentration, after excitation with a pulsed laser (λ_{exc} = 355 nm, 5 ns), monitoring the Tb³⁺:⁵D₄ \rightarrow ⁷F₅ transition at 544 nm. The solid line is a visual guide.

doping. This increase in the decay time may be caused owing to the forbidden radiative stronger transitions arising from the increased symmetry of the crystal, in agreement with the XRD results.

To confirm the change in the crystal symmetry with the incorporation of RE^{3+} ions, we have measured the Tb^{3+} : $^{5}D_{4}$ decay time at 544 nm for ZrO₂:1Tb singly doped and ZrO₂:1 Tb + 20 Gd co-doped samples after excitation at 355 nm. The results are 0.98 ms and 2.27 ms for the ZrO₂:1Tb and ZrO_2 :1 Tb + 20 Gd samples, respectively. This indicates that after the incorporation of Gd^{3+} , there is an increase in the crystal symmetry, consequently increasing the $Tb^{3+}:^{5}D_{4}$ decay time. At 355 nm, Gd³⁺ ions are optically passive and the effect on the forbidden radiative transitions owing to the high symmetry of the crystal can be investigated. On the other hand, the decay time for the ZrO_2 :1Tb + 20Yb sample was considerable lower (1.56 ms, see Figure 6) than that for the ZrO_2 :1Tb + 20Gd sample and this may owe to the occurrence of the DC process in the ZrO_2 :1 Tb + 20 Yb sample. The DC process is also observed when comparing the decay times of 0.98 ms and 0.90 ms for the ZrO₂:1 Tb and ZrO₂:1 Tb + 1 Yb samples. In addition, it is important to mention that the ZrO_2 :1 Tb + xYb samples display NIR emission (as will be shown below), indicating that QC mechanisms (see Figure 3) are responsible for the depopulation of the Tb^{3+} : $^{5}\text{D}_{4}$ level through a DC process from $\text{Tb}^{3+} \rightarrow \text{Yb}^{3+}$. The combination of these facts explains the observed behavior of the luminescence decay time of the $Tb^{3+}{:}^5D_4 \rightarrow {}^7F_5$ transition.

The NIR emission spectra of the ZrO_2 :1 Tb + *x*Yb annealed samples (x = 1, 5, 10, and 20 mole-%) after resonant pumping of the Tb³⁺:⁵D₄ level (at 488 nm) were recorded as a function of the Yb³⁺ doping (see Figure 7(a)). The NIR emission profile of the Yb³⁺ ions has three peaks centered at 981, 1012, and 1044 nm for the ZrO₂:1 Tb + 1 Yb annealed sample. However, with increasing Yb³⁺ concentration, the spectral profile changes from three to two peaks owing to the higher symmetry. Similar behavior was

FIG. 7. NIR emission spectra of the ZrO₂:1 Tb + *x*Yb annealed samples (x = 1, 5, 10, and 20 mole-%) under excitation at 488 nm. The inset shows the dependence of the Yb³⁺ emission intensity on the excitation power for the ⁵D₄ level of the Tb³⁺ ion, monitored at $\lambda_m = 980 \text{ nm}.$

observed by de la Rosa *et al.*³⁹ in Yb³⁺ singly doped ZrO₂ nanocrystals. In addition, the NIR emission integrated intensity (see inset in Figure 7(a)) increases with Yb³⁺ doping from 1 to 10 mole-% owing to an DC process from Tb³⁺ to Yb³⁺. However, at higher Yb³⁺ concentration (20 mole-%), there is a decrease in the DC intensity, which may be caused owing to the forbidden radiative stronger transitions arising from the increased symmetry of the crystal (cubic),⁴³ and Yb³⁺ concentration quenching. The Yb³⁺ concentration quenching is often observed in Yb doped materials at high Yb³⁺ concentrations.⁴⁴

Excitation power measurements were performed to elucidate the origin of the mechanisms involved in the DC process. The power dependence curves for the DC emission $Yb^{3+}:^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ (at 980 nm) in the range 50–200 mW were recorded for all of the annealed samples. Figure 7(b)shows a double logarithmic plot of the linear fits to the dependence of the NIR emission intensity at 980 nm on the excitation power after resonant pumping of the Tb³⁺:⁵D₄ level (at 488 nm) for the annealed samples with x = 1 and 20 mole-% Yb³⁺. The slope increases from 0.71 to 0.78 as the Yb³⁺ concentration increases. Duan et al.²⁹ obtained similar slopes between 0.7 and 0.8 depending on the Yb^{3+} concentration in $NaYF_4:Tb^{3+}$, Yb^{3+} powder samples. Interestingly, sublinear slopes of 0.45 (300 K) and 0.88 (77 K) were also reported by Strek *et al.*²⁸ in Tb^{3+} -KYb(WO₄)₂ crystal. However, the physical meaning of theses slopes is poorly discussed in the literature. More recently, Duan et al.²⁹ developed a QC model, using rate equations to explain the sublinear slopes, in which the slopes were attributed to the coexistence of two different QC mechanisms: a linear process, in which the DC intensity varies linearly with the excitation power (slope of 1), where the energy transfer is from one Tb^{3+} ion to two Yb^{3+} ions (referred to as the cooperative energy transfer process (1) in Figure 3) and a nonlinear process, in which the DC intensity varies as the square root of the excitation power (slope of 0.5), where the energy transfer is from one Tb^{3+} ion to two Yb^{3+} ions mediated by a virtual level (referred to as energy transfer via intermediate virtual level process (2) in Figure 3). Following the reasoning of Duan *et al.*, our sublinear slopes indicate the coexistence of the aforementioned processes. We are currently performing a systematic study of different materials to elucidate the nature of these sublinear slopes and will report the results in future work.

IV. CONCLUSIONS

In conclusion, our results demonstrated that Yb^{3+} ion incorporation strongly influences the spectroscopic properties of $Tb^{3+}-Yb^{3+}$ co-doped zirconia nanocrystals. A change of the crystalline phase from monoclinic to tetragonal to cubic, and an increase in the Tb^{3+} ion concentration were observed with increasing Yb^{3+} concentration. As a consequence of the high symmetry of the crystal, the Tb^{3+} :⁵D₄ level decay time increased. The DC emission was also observed, with the 10 mole-% Yb sample displaying the highest DC emission. The DC emission owes to a coexistence of two QC mechanisms: a linear and a non-linear process, which explains the sublinearity of the slopes of the DC intensity versus the excitation power. Our results suggest that $Tb^{3+}-Yb^{3+}$ co-doped ZrO_2 nanocrystals have potential as a QC material for solar cells.

ACKNOWLEDGMENTS

Financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Instituto Nacional de Ciência e Tecnologia-Nanotecnologia para Marcadores Integrados (INCT-INAMI), Laboratório Nacional de Luz Sincrotron (LNLS), and the Rede Nanobiotec-Brasil/CAPES is gratefully acknowledged. The authors are especially thankful to José Fernando de Lima for the EPR measurements and Professor Dr. Jean Claude M'Peko for fruitful discussions.

- ¹W. Shockley and H. J. Queisser, J. Appl. Phys. **32**, 510 (1961).
- ²B. S. Richards, Sol. Energy Mater. Sol. Cells **90**, 1189 (2006).
- ³T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys. **92**, 1668 (2002).
- ⁴B. M. van der Ende, L. Aarts, and A. Meijerink, Phys. Chem. Chem. Phys. **11**, 11081 (2009).
- ⁵P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, Phys. Rev. B **71**, 014119 (2005).
- ⁶J. J. Eilers, D. Biner, J. van Wijngaarden, K. Krämer, H. U. Guüdel, and A. Meijerink, Appl. Phys. Lett. **96**, 151106 (2010).
- ⁷D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, Opt. Lett. **35**, 220 (2010).
- ⁸L. J. Borrero-González and L. A. O. Nunes, J. Phys.: Condens. Matter. 24, 385501 (2012).
- ⁹D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, Opt. Lett. 33, 1884 (2008).
- ¹⁰E. De la Rosa-Cruz, L. A. Díaz-Torres, R. A. Rodríguez-Rojas, M. A. Meneses-Nava, O. Barbosa-García, and P. Salas, Appl. Phys. Lett. 83, 4903 (2003).
- ¹¹G. Chen, G. Somesfalean, Y. Liu, Z. Zhang, Q. Sun, and F. Wang, Phys. Rev. B 75, 195204 (2007).
- ¹²I. Hyppänen, J. Hölsä, J. Kankare, M. Lastusaari, and L. Pihlgren, Ann. N. Y. Acad. Sci. **1130**, 267 (2008).
- ¹³S. Ye, Y. Katayama, and S. Tanabe, J. Non-Cryst. Solids 357, 2268 (2011).
- ¹⁴Q. Duan, F. Qin, D. Wang, W. Xu, J. Cheng, Z. Zhang, and W. Cao, J. Appl. Phys. **110**, 113503 (2011).
- ¹⁵S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu, Appl. Phys. Lett. **92**, 141112 (2008).
- ¹⁶I. A. A. Terra, L. J. Borrero-González, T. R. Figueredo, J. M. P. Almeida, A. C. Hernandes, L. A. O. Nunes, and O. L. Malta, J. Lumin. **132**, 1678 (2012).
- ¹⁷P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, J. Appl. Phys. 110, 123527 (2011).
- ¹⁸Q. Zhang, X. Liu, S. Ye, B. Zhu, Y. Qiao, G. Dong, B. Qian, and D. Chen, IEEE Photon. Technol. Lett. **21**, 1169 (2009).
- ¹⁹Q. Y. Zhang, C. H. Yang, and Y. X. Pan, Appl. Phys. Lett. **90**, 021107 (2007).
- ²⁰Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, Appl. Phys. Lett. 90, 061914 (2007).
- ²¹Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, Appl. Phys. Lett. **91**, 051903 (2007).

- ²²X. Y. Huang and Q. Y. Zhang, J. Appl. Phys. 105, 053521 (2009).
- ²³J. L. Yuan, X. Y. Zeng, J. T. Zhao, Z. J. Zhang, H. H. Chen, and X. X. Yang, J. Phys. D: Appl. Phys. 41, 105406 (2008).
- ²⁴Y. Wang, L. Xie, and H. Zhang, J. Appl. Phys. **105**, 023528 (2009).
- ²⁵G. Lakshminarayana and J. Qiu, J. Alloys Compd. **481**, 582 (2009).
- ²⁶X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu, Appl. Phys. B 96, 51 (2009).
- ²⁷D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, J. Phys. Chem. C 113, 6406 (2009).
- ²⁸W. Strek, A. Bednarkiewicz, and P. J. Deren, J. Lumin. **92**, 229 (2001).
- ²⁹Q. Duan, F. Qin, Z. Zhang, and W. Cao, Opt. Lett. **37**, 521 (2012).
- ³⁰R. C. Garvie, R. H. Hannink, and R. T. Pascoe, Nature 258, 703 (1975).
- ³¹P. Wright and A. G. Evans, Curr. Opin. Solid State Mater. Sci. 4, 255 (1999).
- ³²C. W. Li, M. M. McKerns, and B. Fultz, J. Am. Ceram. Soc. **94**, 224 (2011).
- ³³A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, Langmuir 14, 5011 (1998).
- ³⁴I. Hyppanen, J. Holsa, J. Kankare, M. Lastusaari, L. Pihlgren, and T. Soukka, J. Fluoresc. 18, 1029 (2008).
- ³⁵T. Nguyen, Solid State Ionics **138**, 191 (2001).
- ³⁶L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, J. Nanosci. Nanotechnol. **11**, 350 (2011).
- ³⁷L. L. Hench and J. K. West, Chem. Rev. **90**, 33 (1990).
- ³⁸J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, Opt. Mater. Express 2, 331 (2012).
- ³⁹E. De La Rosa, D. Solis, L. A. Díaz-Torres, P. Salas, C. Angeles-Chavez, and O. Meza, J. Appl. Phys. **104**, 103508 (2008).
- ⁴⁰E. De La Rosa, L. Diaz Torres, P. Salas, and R. Rodriguez, Opt. Mater. 27, 1320 (2005).
- ⁴¹R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. **32**, 751 (1976).
- ⁴²H. Arashi, S. Shin, H. Miura, A. Nakashima, and M. Ishigame, Solid State Ionics 35, 323 (1989).
- ⁴³L. A. Gomez, L. D. S. Menezes, C. B. De Araújo, R. R. Gonçalves, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. **107**, 113508 (2010).
- ⁴⁴Y. Guyot, A. Steimacher, M. P. Belançon, A. N. Medina, M. L. Baesso, S. M. Lima, L. H. C. Andrade, A. Brenier, A. Jurdyc, and G. Boulon, J. Opt. Soc. Am. B 28, 2510 (2011).