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Abstract - Our aim is to evaluate the feasibility of fault location 

in transmission lines by analyzing the magnetic signatures 

resulting from non-invasive measurements. Besides traditional 

monitoring methods, which use sensors physically connected to the 

electric power system, a non-invasive method seems an interesting 

way to satisfy the increasingly demanding economic and technical 

requirements. This paper investigates a fault location 

methodology based on an autoregressive modeling of the magnetic 

signature measured around the transmission line. The efficiency 

of the method is analyzed based on a simulation example which 

takes into account 8000 different fault scenarios. 

 
Index Terms—Power systems, fault location, fault detection, 

non-invasive diagnostic, magnetic signature, traveling waves 

theory.  

I. INTRODUCTION 

lectric Power Systems (EPS) are subject to undesirable 

transients that can be caused by lightning, drive inductive 

loads, switching capacitors and other phenomena. The potential 

faults that can appear in an EPS can cause extensive financial 

damages to both energy suppliers as well as to consumers. 

These faults may occur in different components of an EPS, 

among which the Transmission Lines (TL) which are the focus 

of the present study. Their physical dimensions, functional 

complexity and the environment they are built in make the TL 

highly susceptible elements and contribute to increasing the 

difficulties related to their maintenance and monitoring [1]. So 

as to satisfy the high technical and economic requirements, the 

time spent by the maintenance teams to locate and to repair the 

fault should be as short as possible. In this context, there has 

been a growing interest in the development of monitoring and 

diagnostic methodologies. 

Some works concerning fault location using invasive 

approaches can be found in the literature. We can highlight the 

impedance calculation algorithms based on the measurement of 

apparent TL impedance that changes during a fault [2][3][4][5]. 

The measurement of the TL impedance is based on the voltage 

and current measured in one or multiple TL terminals. Besides, 

other algorithms based on the traveling wave theory which 

analyzes the wave propagation along the TL [6][7][8][9], as 

well as machine-learning techniques which identify some 

behavioral patterns to estimate the fault location 

[10][11][12][13][14][15] have been proposed. 

Non-invasive approaches for fault location in EPS can 
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provide a number of advantages: (i) a highly qualified team is 

not necessary to install and to connect the devices to the TL; (ii) 

the service does not need to be interrupted; (iii) portable 

measurement devices are possible; and (iv) it avoids any contact 

with de TL. Only few non-invasive techniques to monitor faults 

in EPS have been reported in the literature. We can cite two 

works: in [16], a wavelet analysis is used to classify the faults 

and, in [17], a temporal analysis is proposed to locate the faults. 

Both techniques are based on the magnetic signature measured 

around the TL. Nevertheless, new developments of non-

invasive techniques for monitoring energy networks are still 

necessary. 

We here investigate a non-invasive methodology for fault 

location in EPS. The method relies on the Auto-Regressive 

(AR) modeling of the magnetic signature and involves three 

steps. In the first step, the parameters of the model are identified 

based on a no-fault magnetic signature. In the second step, the 

difference between the signal predicted by the model and the 

true measurement is monitored and allows detecting the 

occurrence of a fault. In the third step, the traveling waves 

theory is used to locate the fault along the TL.  

This paper is organized as follows: the magnetic signature is 

presented in part II. Part III presents the simulation of the TL 

and the different scenarios of faults used to evaluate the fault 

location methodology. The AR methodology is explained in 

part IV and evaluated in part V. A discussion and some 

conclusions are given in part VI. 

II. MAGNETIC FIELD ANALYSIS 

To capture the magnetic field, we used two coils in 

perpendicular planes; one to monitor the field in the horizontal 

direction 𝐻𝑥 and one to monitor the field in the vertical 

direction 𝐻𝑦. This section describes how to calculate the 

magnetic field using a system of three long wires, as shown in 

[18].  

 
Fig. 1 - Variables for magnetic field analysis 
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A long conductor carrying a current 𝑖 generates a magnetic 

field which can be decomposed into a vertical component 𝐻𝑥 

and a horizontal component 𝐻𝑦, see Fig. 1. From the Ampère 

Circulation law, those components are defined by: 

 

 

 𝐻𝑥 = 𝐷𝑖    𝑎𝑛𝑑   𝐻𝑦 = 𝑄𝑖 ( 1 ) 

 

where the factors 𝐷 and 𝑄 are the coefficients related to the 

spatial arrangement of the sensor (see [18]) given by: 

 

 𝐷 =
(𝑐𝑜𝑠 𝛿)2

2𝜋ℎ
    𝑎𝑛𝑑   𝑄 =

𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝛿

2𝜋ℎ
 ( 2 ) 

where: 

 𝛿 = 𝑡𝑎𝑛−1
𝐿

ℎ
 ( 3 ) 

 

 

For the three-current wires case, the horizontal 𝐻𝑥 and 

vertical 𝐻𝑦 components of the local magnetic field intensity can 

be determined by: 

 

 
𝐻𝑥 = 𝐷1𝑖1 + 𝐷2𝑖2 + 𝐷3𝑖3 

   𝐻𝑦 = 𝑄1𝑖1 + 𝑄2𝑖2 + 𝑄3𝑖3     
( 4 ) 

 

Equation ( 4 ) represents the superposition of the magnetic 

field contributions of each conductor in the horizontal and 

vertical axes. The terms 𝑄𝑛 and 𝐷𝑛 are the spatial arrangements 

of the conductor 𝑛 to the sensor and 𝑖𝑛 is the current through 

the conductor 𝑛. A matrix representation of that can be written 

as: 

 

 [𝐻𝑥𝑦] = [𝐴𝐷𝑄][𝐼3𝜙] ( 5 ) 

 where  

 
[𝐴𝐷𝑄] = [

𝐷1 𝐷2 𝐷3

𝑄1 𝑄2 𝑄3
] 

( 6 ) 

 and  

 

[𝐼3𝜙] = [

𝑖1(1) 𝑖1(2) ⋯ 𝑖1(𝐾)
𝑖2(1) 𝑖2(2) ⋯ 𝑖2(𝐾)
𝑖3(1) 𝑖3(2) ⋯ 𝑖3(𝐾)

] 

( 7 ) 

 

 A𝐷𝑄 is the spatial arrangement matrix of the sensor for the 

three-phase system and 𝐼3𝜙 is the matrix of current time samples 

𝑖𝑛(𝑘) from each conductor 𝑛, and 𝐾 is the total number of 

measured samples. The values in the matrix 𝐼3𝜙 are obtained 

from the simulation described in the next section. 

III. SIMULATION 

In this section, a realistic model of TL is proposed in order to 

perform several simulations of fault for subsequently validating 

the fault location method. The simulation was performed using 

Simulink/Matlab® and the toolbox SimPowerSystems™. 

 

 

 
Fig. 2 - Electric power system analyzed 

A. Transmission line model 

The model proposed for the transmission line is similar to 

that described in [19], which is 150 km long and 440 kV; see 

Fig. 2. Note that the performance and behavior of a TL depends 

almost exclusively on its dimensions and physical parameters. 

Thus, it is important to determine the electrical parameters of 

the TL to be used in the simulation.The TL used as a sensitive 

case for this work is a typical line of Companhia Energética de 

São Paulo (CESP) between the cities of Bauru and Jupiá in 

Brazil. Fig. 2 shows the EPS analyzed, which uses two 

generators, the first being 10 GVA, 440 kV and 0° phase angle, 

and the second, 9 GVA, 440 kV and -10° phase angle. The 

system is composed of 3 segments, B1-B2, B2-B3 and B3-B4, 

of length 80 km, 150 km and 100 km respectively. For this 

work, all the faults simulations are performed within the central 

segment B2-B3, and the measurements of the magnetic field are 

made in the vicinity of the Busbars B2 and B3. 

Based on these physical parameters, the electrical parameters 

of the system are computed. They are the resistances, 

capacitances and inductance of the positive and zero sequences, 

as shown in Table 1. 
 

TABLE 1 

 RESISTANCES, CAPACITANCES AND INDUCTANCE OF THE LT. 

 

 

These parameters are important not only for simulation, but 

also to calculate the speed of wave propagation in the TL. The 

following equation shows the wave propagation velocity, 

denoted 𝑢𝑚, in the modeled TL: 

 

 𝑢𝑚 =
1

√𝐿0𝐶0

= 295.045 𝑘𝑚/𝑠 ( 8 ) 

 

Where 𝐿0 and 𝐶0 are the inductance and the capacitance zero 

sequence. 

As shown in Fig. 3, the magnetic field sensors are positioned 

in the vicinity of the TL. We calculated the ADQ matrix and then 

the horizontal 𝐻𝑥 and vertical 𝐻𝑦 components of the magnetic 

field through ( 5 ). The sensors were arranged under Busbar B2 

and Busbar B3, as shown in Fig. 2. 
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Fig. 3 - Arrangements of the sensors near the TL 

 

For fault monitoring, we consider the squared magnitude of 

the magnetic field, due to its sinusoidal characteristics:  

 

 |𝐻(𝑘)|2 = 𝐻𝑥(𝑘)2 + 𝐻𝑦(𝑘)2 ( 9 ) 

B. Simulation database 

To obtain the database, some aspects of the simulation have 

to be highlighted. Among them, we have the simulation 

sampling frequency 𝑓𝑠. This frequency should be high enough 

to properly represent the transitory phenomena and in addition, 

to provide the desired fault location accuracy. Taking these two 

factors into consideration, the sampling frequency was chosen 

at 1.5 MHz. With this frequency, it is possible to observe 

frequencies up to 750 kHz according to the Nyquist theorem, 

and to obtain an accuracy of 98 m, as shown in [17]. Each 

simulation lasted 0.1 s, i.e., 6 periods of 60 Hz. 

The system must simulate several faults according to 

different values of the main parameters that affect the amplitude 

and the transition of the faults. In this study four parameters 

have been taken into account: the type, the angle, the resistance 

(𝑅𝑓) and the location of the fault. 

The fault distance, which is the distance between the swing 

Busbar (B2) to the point where there was a fault, was simulated 

from 5 km to 145 km with 20 km intervals. For each distance, 

1000 cases were simulated with random values of the other 

parameters, which represent a total of 8000 cases. Table 2 

shows a summary of the parameters, their ranges and the points 

taken into account in the simulation. 

 
TABLE 2  

SUMMARY OF THE SIMULATION PARAMETERS 

 
 

IV. METHODOLOGY 

The proposed fault location methodology is based on the 

analysis of the magnetic signature 𝑥(𝑘) = |𝐻(𝑘)|2 captured by 

the two sensors, B2 and B3 (see Fig. 2 and Fig. 3 and (9)). For 

each signal, an Auto-Regressive (AR) model is first identified. 

Based on this model, the magnetic signature is predicted one 

step ahead and the prediction error is computed. Once this error 

overcomes a threshold, a disturbance is assumed to have 

occurred in the system. According to the times of occurrence 

detected by each of the two sensors, the fault location can be 

evaluated according to the traveling wave theory. 

This methodology thus needs three steps, model 

identification, fault detection and fault location, which are 

described in greater detail in the three subsections as follows. 

A. Model identification 

An 𝑚-th order AR model assumes that each sample 𝑥(𝑘) of 

a signal is a linear combination of the 𝑚 previous samples 

𝑥(𝑘 − 𝑛); thus 

 

 𝑥(𝑘) = ∑ 𝑎𝑛𝑥(𝑘 − 𝑛).

𝑚

𝑛=1

 ( 10 ) 

 

Where 𝑎𝑛 is the n-th coefficient of the AR model. The AR 

models are particularly suitable to the signals presenting strong 

spectral content at a limited number of frequencies as is the case 

for sinusoidal and harmonic signals. 

To identify the value of the AR coefficients that best describe 

the squared magnetic field |𝐻(𝑘)|2 measured by the sensors, a 

mean squared algorithm [20] is applied to the first two periods 

of the signals (16.67ms). Considering the signals from the 

simulation presented in the previous section, a 6th-order model 

was found to be adapted. 

B. Fault Detection 

Once the AR model has been identified, the magnetic 

signature at time 𝑘 can be predicted as a function of the true 

signature measured at the previous times according to 

 

 𝑥̂(𝑘) = ∑ 𝑎𝑛|𝐻(𝑘 − 𝑛)|2.

6

𝑛=1

 ( 11 ) 

 

Where 𝑥̂ denotes the estimate of |𝐻|2. At every sample time 

𝑘, the prediction error 𝜀(𝑘) is then evaluated according to 

 

 𝜀(𝑘) = 𝑥̂(𝑘) − |𝐻(𝑘)|2 ( 12 ) 

 

An abrupt variation in the prediction error indicates that the 

magnetic signatures measured at the sensors are no longer 

consistent with the previously identified model. It can therefore 

be concluded that a disturbance has occurred in the TL. In the 

methodology proposed, the detection of a fault is achieved by 

monitoring the prediction error ( 12 ) and comparing it with a 

threshold 𝜀𝑡ℎ. If 𝜀(𝑘) >  𝜀𝑡ℎ, a fault is detected. 

The detection threshold 𝜀𝑡ℎ is obviously a critical parameter 

of the method: a high threshold could lead to misdetections, 

while a too small threshold would detect numerous wrong 
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faults. In this study, the threshold is chosen to be 110% of the 

maximum prediction error observed during the two periods 

which follow the model identification step (between 16.67ms 

and 33.33ms); hence, we have 

 

 𝜀𝑡ℎ = 1.1 ∗ max
16<𝑡<33 

𝜀(𝑘). ( 13 ) 

 

Fig. 4 illustrates these two stages divided by the dashed red 

line. The blue signals represent the magnetic signature (left side 

& top) and the prediction error (left side & down) during the 

AR model identification stage, and the black signals (right side) 

correspond to the threshold determination stage. 

 

 
Fig. 4 – Two stages of the method: AR model identification (left side or blue 

signals) and detection threshold determination (right side or black signals). 

Top: simulated magnetic signature. Down: prediction error. 

C. Fault Location 

Based on the difference between the times of occurrence of 

the fault in the two TL terminals, the travelling wave theory 

[22][23] allows determining the location of the fault along the 

TL. 

Denoting 𝑑1 and 𝑑2, the distances between the location of the 

disturbance and the two sensors, 𝑙 is the length of the TL, 𝑢𝑚 

the propagation speed of the electrical wave along the TL and 

𝑡1 and 𝑡2 the times of fault detection for the two sensors, we 

have the following equations: 

 

 𝑙 = 𝑑1 + 𝑑2 ( 14 ) 

   

 𝑑1 = 𝑢𝑚𝑡1      𝑎𝑛𝑑      𝑑2 = 𝑢𝑚𝑡2 ( 15 ) 

 

Putting those equations together, the distance 𝑑1 between the 

fault and the first sensor can be obtained as 

 

 𝑑1 =
𝑙 − 𝑢𝑚(𝑡2 − 𝑡1)

2
 ( 16 ) 

The latter equation is used to estimate the fault location. 

V. RESULTS 

In this section, we evaluate the performance of the 

methodology proposed based on AR modeling to locate 

potential faults in a TL. We also present some results to 

illustrate the simulations. 

A. Simulation results 

In order to illustrate the simulated data, Fig. 5 and Fig. 6 

show the data from a simulation of a three-phase fault, located 

100 km away from Busbar B2, with 𝑅𝑓=50  and 0° of 

incidence angle. The figures show the currents in the three 

phases and the squared magnitude of the magnetic field. 

 

 
Fig. 5 - Signals of three-phase current and magnetic field squared of a three-

phase fault measured at Busbar B2 

 
Fig. 6 - Signals of three-phase current and magnetic field squared of a three-

phase fault measured at Busbar B3 

 

Note that, the fault transient can be verified in both signals: 

the current signals and the squared magnetic field. 

B. Fault detection and location 

In order to exemplify the AR detection and location 

algorithms, we simulate a fault at 100 km of the TL and estimate 

the AR model of the squared magnetic field in the first 

16.67 ms. The AR coefficients obtained from Busbar B2 in this 

example give the following prediction equation: 

 

 

𝑥̂(𝑘) = 4.0 𝐻(𝑘 − 1)2 − 6.8 𝐻(𝑘 − 2)2 −
6.5 𝐻(𝑘 − 3)2 − 4.0 𝐻(𝑘 − 4)2 − 1.5 𝐻(𝑘 −
5)2 + 0.28 𝐻(𝑘 − 6)2  

( 17 ) 

 

The value of the detection threshold calculated in this 

example for Busbar B2 was 1.5𝑥10−9. 
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Fig. 7 - Estimation error on the terminal B2- AR model 

 
Fig. 8 - Estimation error on the terminal B3- AR model 

 

Fig. 7 and Fig. 8 show the estimated signal of the magnetic 

field and the absolute error between the estimated value and the 

actual value, at terminals B2 and B3, respectively. The error 

signal crosses the threshold at time 𝑡1  = 88.8580 ms for the 

terminal B2 and at time 𝑡2 = 88.6887 𝑚𝑠 for the terminal B3. 

The difference between the detection times is then 𝑡2 − 𝑡1 =

−0.1693 𝑚𝑠.  

After estimating the occurrence time of the fault for each line 

terminal, the time data are processed using the traveling wave 

technique as described in Section IV.C. From the value of 𝑡2 −
𝑡1, the distance at which the fault occurred is calculated. For 

this example, we obtained an estimated distance of 𝑑̂1 =

99.98 𝑘𝑚 and an error of 24 m. 

C. Global results 

The 150 km TL system was simulated to evaluate the global 

performance of the methodology. Different cases were 

simulated, varying the parameters that can significantly affect 

the system behavior (see Section III). 

Table 3 shows the global results applying the methodology 

for the 8000 cases simulated. The error has been calculated by 

(𝑑̂1 − 𝑑1) for all cases; where, 𝑑̂1is the estimate distance. 

 
TABLE 3 

RESULTS OF LOCATION ALGORITHMS 

 
 

 

Table 3 allows observing the suitability of the model in many 

situations, which is highlighted by the results of the mean 

errors. The sampling uncertainty is related to the choice of 𝑓𝑠 

(sampling frequency), thus, regardless of the methodology 

adopted, the traveling wave-based method can not get a better 

accuracy than that. 

VI. CONCLUSION 

An analysis of the feasibility of locating faults in EPS based 

on non-invasive measurements was presented. The 

methodology proposed relies on the AR modeling of the 

magnetic field generated by the TL. 

The results show the potential of the methodology. The 

average error obtained by applying the AR modeling estimator 

was considered satisfactory. The maximum error obtained was 

39 m. The algorithm showed good performance, independently 

of the parameters that affect the waveform of the fault. 

In addition, the method is not dependent on fault resistance, 

as the current distance relays; and it does not need previous 

simulations to be implemented, as the methods involving 

machine learning.  

The use of a non-invasive approach to solve problems related 

to fault location can be a promising alternative, regarding its 

capacity to monitor the system information based on the 

magnetic field, not requiring accessories connected to TLs. The 

method is limited by the signal sampling frequency and by the 

techniques required by the hardware; physical implementation 

will be considered in future studies. 

Moreover, the angle between the signal components in 

horizontal and vertical direction and the magnetic field are 

likely to considerably improve to the fault detection avoiding 

false alarms, in addition to a great potential for fault 

classification.  

We can propose new methodologies exploring the 

noninvasive feature. The literature shows several techniques 

with invasive proposals that we could extensively explore. The 

standard analysis in the frequency domain associated with 

computational intelligence techniques can yield good results as 

well as the methods already analyzed for invasive approaches.  

As the noninvasive analysis is a new approach in the 

literature, the possibilities of new fault location techniques are 

manifold and may exploit not only location but also 

classification, harmonic monitoring, protection, among others. 
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