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Keywords: Natural circulation cooling systems are currently used in new nuclear reactors. Over the last decades, research in
Two-phase flow these systems has focused in the study of flow and heat transfer parameters. A particular area of interest is the
Edge detection estimation of two-phase flow parameters by image processing and pattern recognition using intelligent pro-
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Image processing
Natural circulation

cessing. Several methods have been proposed to identify objects of interest in bubbly two-phase images. Edge
detection is an important task to estimate flow parameters, in which the bubbles are segmented to obtain several
features, such as void fraction, area, and diameter. However, current methods face difficulties in determining
those parameters in high bubble-density two-phase flow images. Here, a new edge detection method is proposed
to segment bubbles in natural circulation instability images. The new method (Fuzzy Contrast Standard Deviation
— FUZCON) uses Fuzzy Logic and image standard deviation estimates of locally measured contrast levels. Images
were obtained through an experimental circuit made of glass, which enables imaging flow patterns of natural
circulation cycles at ambient pressure. The results indicated important improvements on edge detection effi-
ciency for high void fraction estimation on high-density two-phase flow bubble images, when compared to
classical detectors, without the need to use smoothing algorithms or human intervention.
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1. Introduction

The cooling system is a critical component of a nuclear power plant,
which requires an efficient process of heat exchange. Recently, studies
have focused on the phenomenology involved with the nuclear reactor
cooling systems and their respective control. A significant portion of
new reactor designs uses natural circulation systems for this purpose
(Andrade et al., 2000). In such a critical system, it is important to have
knowledge about limiting conditions of the two-phase flow regimes to
manage heat transfer of the reactor coolant. Within such context, it is of
particular interest the study of flow regimes using image processing
(Mesquita et al., 2012). In order to determine the void fraction, the
image segmentation process can be used to divide the image into sub-
regions to obtain the region of interest (ROI). So, in this paper, edge is
regarded as a set of connected pixels about the contour between two
regions. Here, a methodology to detect bubble edges in images with
high void fraction in a two-phase bubbly flow is presented. It was ap-
plied to the natural circulation experimental circuit (NCC) (shown in
Fig. 1) in the Nuclear and Energy Research Institute (IPEN), Brazil. This
circuit is made of glass, which allows to image flow patterns under
ambient pressure.
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Fig. 1. Experimental setup (NCC) used to capture images on simulation of
natural circulation cycles at the Nuclear and Energy Research Institute (IPEN,
Brazil).
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The paper is organized as follows. Section 1 discusses the conven-
tional method for bubble edge detection, Section 2 details the new
methodology, Section 3 presents experimental results using this meth-
odology, and finally Section 4 summarizes the results.

1.1. Bubble edge detection

Two-phase flow pattern transitions have been studied using tech-
niques derived from artificial intelligence or image processing
(Mesquita et al., 2012; Abdallah, 2009; Crivalero et al., 2002; Mesquita
et al., 2009; Carl and Avdic Senada, 2005; Wu et al., 2006; Sarkar et al.,
2005; Zhang and Huang, 1988; Heydarian et al., 2009), such as artifi-
cial neural networks, Fuzzy Logic, neuro-wavelet, support vector ma-
chine (SVM), and genetic algorithms. Many of those methodologies
(Barbosa et al., 2010; Dinh and Choi, 1999; Shi, 2007; Shi et al., 2004;
Wenyin et al., 2008) can describe useful patterns by segmenting bub-
bles and identifying their edges in order to get some parameters, such as
bubble area and diameter. However, those methods are limited to
bubble edge detection in two-phase flow images, where bubbles are
isolated from each other.

There is an increasing demand to improve information on bubble
contour to obtain precise parameters in two-phase bubbly flow, such as
the void fraction. Void fraction estimation needs the detection of all-
round bubble contour and subsequent volume measurement. This de-
tection is challenging when bubbles are close to each other, which can
cause over-segmentation (Crivalero et al., 2002; Carl and Avdic Senada,
2005; Wu et al., 2006) due to low contrast present in images, ham-
pering bubble identification (Delacroix et al., 2016; Huang et al., 2007).
Other methods (Mishima and Hibiki, 1996; Wang and Dong, 2009) use
contrast, entropy, and power with the purpose to identify flow patterns
without considering the bubble shape.

In some methodologies that can identify bubbles in high void frac-
tion flow images (Wu et al., 2006; Shi, 2007; Wang and Dong, 2009; Do
Amaral et al., 2013; Lau et al., 2013), the edge detection is needed to
estimate flow parameters, such as diameter, volume, mass velocity,
trajectory geometry, distance between bubbles, and their lifetime.
However, those methodologies may fail when intensity changes are
abrupt or when objects are very close to each other, as illustrated in
Fig. 2. Additionally, lighting inhomogeneity and oscillation are ele-
ments that hamper the recognition of objects.

Other methodologies have also been proposed to improve identifi-
cation of objects of interest in high void fraction two-phase flow images
(Wenyin et al., 2008; Barkhoda et al., 2009). They use the Canny op-
erator, combined with other techniques, to establish a smoothing cri-
terion (based on signal noise, good detection, and low spurious re-
sponse) to identify those objects. However, they can only detect edges
in images where bubbles are isolated from each other. Statistical
methods, associated with other techniques such as the Watershed
method, have been used to deal with the difficulty in detecting het-
erogeneous light (Zhang and Huang, 1988; Do Amaral et al., 2013; Lau
et al., 2013).

Even using statistical methods, some problems, such as image super-
segmentation, still arise for heterogeneous lighting. Some investigations
have used techniques based on artificial intelligence, such as Support
Vector Machine (SVM) (Wu et al., 2006; Sarkar et al., 2005) and Fuzzy
Logic (Andrade et al., 2000; Barkhoda et al., 2009; Patel et al., 2011;
Jzau-Sheng et al., 1996), using fuzzy inference to assist the segmenta-
tion process.

Bhardwaj and Mittal (2012) have reviewed edge detection techni-
ques such as Roberts, Sobel, Prewitt, Canny and especially Declivity
ones. Particularly, the Declivity operator has been used in many in-
vestigations (Miché and Debrie, 1995; Bensrhair et al., 1996; El Ansari
et al., 2010; Cabani et al., 2006). The Declivity proposed in reference
(Miché and Debrie, 1995) involves the evaluation of intensity magni-
tudes of a set of contiguous pixels between two local extremes in an
image line. One of the main features of this operator is its ability to
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Fig. 2. Grayscale image of a natural circulation two-phase flow obtained at
NCC experiment presenting high void fraction.

have a self-adaptive threshold value in an unfiltered image. This
threshold value considers the standard deviation of white noise com-
ponents (Gaussian) multiplied by the change in pixel histogram am-
plitude in an image profile. The results have shown good performance
to find true edges in low-contrast images. Moreover, this method has
shown a higher performance compared to classical operators. Declivity
method however, is based on a fixed threshold value, that corresponds
on value of 5.6 times the standard deviation of the noise component for
all images and may induce over-segmentation when is applied using the
region growing principle.

This investigation presents a new approach for edge detection,
based on a modification of the Declivity operator (Miché and Debrie,
1995), providing precision, speed and global self-adaptive properties to
improve void fraction estimation on high-density two-phase flow
bubble images. To detect bubble edges, the method is based on a
standard deviation estimates over all image (through horizontal and
vertical scans) using locally evaluated contrast (gray-level intensity)
steps between the local extremes of the Declivity cluster. Subsequently,
Fuzzy Logic metrics are considered to elaborate the classifier segmen-
tation rules.

2. Proposed method

The proposed method is based on estimating Contrast steps over
intensity values of grayscale images. Initially, a set of k quantized steps
is stablished in the [0.0, 1.0] range through locally evaluated standard
deviations. Then, two self-adaptive fuzzy membership functions are
created based on this set.

257
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2.1. Preprocessing

Images were captured in RGB space (red, green, and blue channels)
and transformed into a unique grayscale channel to reduce computa-
tional processing. The transformation is done for each image pixel using
the conventional relation L = (299R + 587G + 114B). 1073, where L is
the gray intensity and R, G, and B are the respective color intensities.
Each pixel intensity is expressed by an 8-bit depth number which varies
from zero to 255, where zero represents ‘no intensity’ (black) and 255
represents ‘full intensity’ (white).

In this work, negative images (where gray intensity values are
N = 255 — L) were used as reference to associate higher gray intensity
levels with border peaks. Global histogram equalization (Gonzales and
Woods, 2007) is used in darker images. In this case, it is important to
improve gray level distribution, increasing contrast level and conse-
quently providing better edge visualization.

2.2. Contrast methodology definition

The Contrast step measure used in this work is based on an exten-
sion of Declivity measure developed in Miché and Debrie works
(Bhardwaj and Mittal, 2012; Miché and Debrie, 1995; Bensrhair et al.,
1996), emphasizing statistical properties of this feature to object-of-
interest segmentation purposes.

Based on an image line, Miché and Debrie defined a basic Declivity
(Eq. (1)) as a cluster of contiguous pixels P(x) limited by the [x;, x;11]
interval:

D; = {P(x), x € [xi, Xi41]}, (@)

where x; is the position of a iy, detected extreme. Miché and Debrie also
defined the declivity amplitude (d;) as:

di = I(xp)—1(xy), (2

where I(x;) is the grayscale intensity of an extreme pixel.

The extension of Declivity set used at this work was named Mount
(M;). M; was defined (Eq. (3)) as a cluster of contiguous pixels P(x)
limited by an extended interval [x;_;, x;;;], which usually comprises
three consecutive extremes:

M; = {P(x), x € [xi_1, Xi1]}, 3

where x; is the position coordinate of a iy, detected peak, and x; ; and
X;+1 are the positions of the surrounding minima (valleys) as shown in
Fig. 3. This interval was chosen to enhance the set of closest pixels to
the bubble edges and as consequence, use a smaller number of pixels to
compute, implying faster computer processing.

The developed contrast measure operator (Con) (Eq. (5)) is a non-
linear function that estimates the squared grayscale intensity gaps G(x)
(Eqg. (4)) over Mount M;:

G(x) = I*(x). @
I(xj)

£
g Conypy ———— ~— Con,jyy,
8
=
—

I(xj+1) _

11 / ; >

Xj-1 Xj Xj+1

Fig. 3. Left and right contrast measure.
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Con is normalized by the difference between the highest and lowest
intensities of whole scanned image I(x,y) and defined as:

1/2
(ZXEMi lAG(X)l) ,0<Con<1
max [I(x, y)]-min[I (x, )] (5

The proposed Con operator has two new important properties that
make pattern detection easier for the current application. The first
property is that Con may present two opposite values, left (previous)
and right (posterior), Con; and Con,, shown in Fig. 3. Con may also
present only one value if the gray levels only decrease or increase
throughout M;.

The second property refers to contrast measure normalization, which
by definition, is computed between 0 and 1. This normalization enables
this qualitative feature for future use for classification tasks. When
contrast measure is close to 0, it can be considered very low and possibly
irrelevant for edge detection in most cases. On the other hand, when it
is close to 1, the contrast measure can be considered important for edge
detection.

Con =

2.3. Contrast measure (Con) implementation basis

Contrast measure definition considers detected peaks to perform
edge feature extraction. Con is estimated based on horizontal and ver-
tical rastering. Fig. 4a shows an isolated bubble image example and
Fig. 4b shows the highlighted grayscale profile with 1 x 62 resolution.

Fig. 5 shows a set of three different Mounts detected in the high-
lighted image line shown in Fig. 4. The first Mount (M;) found is the
smallest of all, between pixels 7 and 10. The second one (M,) is be-
tween pixels 10 and 28 and the third one (M3) is between pixels 29 and
55.

To implement the method, a feature vector (VCD) was created, il-
lustrated in Eq. (6), and consists of four elements. These elements re-
present respectively the left Contrast value, the peak corresponding
pixels column, the peak corresponding pixels and finally, the right
Contrast value.

0.099, 9, 0, 0.139
0.581, 15, 0, 0.61
0.877, 44, 0, 0.855 (6)

VCD =

Mount-1, Mount-2, and Mount-3 were evaluated by Eq. (3). Both
Mount contrast measures Con; and Con, can be evaluated with improved
computational performance through Eq. (7) to obtain VCD feature
vector.

b)
Fig. 4. Bubble image: a) Unit bubble. b) Enlarged bubble linear profile.
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Fig. 5. Grayscale [0, 255] intensity values (I(x)) of the detected Mounts (M;) in
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2.4. Contrast standard deviation methodology

Although the lighting used in the capture of the image was constant,
there were lighting oscillations due to multiple light incidence angles
and, consequently, different refractions caused by the moving bubbles.
Contrast inhomogeneity through image occurs due to multiple light
refractions and reflections inside two-phase flow. Bubble surfaces and
glass tube produce spherical, cylindrical and more complex-shaped lens
that cause different capture conditions by the camera apparatus. Thus,
the captured images present contrast variations related to lighting in-
homogeneity and, therefore, different standard deviation mappings can
occur, corresponding to left and right contrast measures. This technique
can be used to find standard deviations that represent lighting dis-
tribution over bubble contour.

All detected mounts are stored in a N-sized VCD feature vector
containing all contrast measures (Cons) found in the image. A histogram
based on k bins is constructed quantizing all evaluated Cons. This his-
togram can be considered as a probability distribution as was pre-
viously proposed by Otsu segmentation method based on intensity va-
lues of image pixels (Otsu, 1979), where contrast probability can be
defined as:

k-1
n;

p;=—,p =>0and pi=1.
N § ®

N represents the number of evaluated contrast measure values over
all image. The n; variable corresponds to the number of contrast mea-
sures for each quantized i level, where i € [0, k—1]. Based on ten bins
(k = 10) these Cons were approximated to discreet values: [0.0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] to compose the histogram and
improve computational evaluation speed.

Following Otsu procedure, this Cons histogram could be divided into
two different classes, one associated to the background C, and the other
to the foreground C;. The two (w, and w,) classes’ occurrence prob-
abilities would be found respectively depending on a t threshold level as
shown on Eq. (9).

t
wo = Pr(Cy) = w(t) = Z p; and
i=0

k-1

wp; = Pr(Cl) =1-wy = z D;-
et 9

The associated conditional probabilities (P,) for each class enable
the u, mean and o; standard deviation estimations for left or right
quantized Contrast values as shown on Egs. (10) and (11):

k-1 k-1

Con,. p;
My = Z Con;. Pr(Con;|Cy) = Z o b
i=t+1 i=t+1 wy 10
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(=1 e

o1 :\/ Z (Con;—u,)*. Pr(Con;ICy) :\/
i=t+1

In this work, the search for the correct t value was interactively
implemented based on a histogram to evaluate standard deviations
distribution. A vector W, (j) was constructed evaluating the cumulative
ten (k = 10) possible t values of standard deviations associated for
background class (Cp), based on a mean value of all detected contrast
measures. Based on W;(j), its complement W;(i) is evaluated. Other two
vectors are mounted to further calculations, the vector containing the k

kz’:l (Coni—u,)”. p,

W1 (€8]

i=t+1

—_
quantized contrast measures CON (j) and the number of detected
contrast measures for each level WCON (j). These vectors are shown on
Eq. (12):

Wo () = [wo(0), wo (D), vy wo ()]

() = 1-wo(j)
= (k-1)
CON (j) = [0.0, 0.1,...,—10 ]

Teon () = [ncon (0), neon (1), .. ncon (k=1)] 12)

where j =0, 1, ..., k — 1, are the possible t values.

The search for the correct (more appropriate) t value can be im-
plemented by an iterative method that utilizes the mean Contrast
measure (CON) evaluated as shown on Eq. (13), to obtain the prob-
ability distribution of Con values.

¥, Ficon () CON ())
N

CON = 13)

N= Zk_l Teon ()

j=0

(14)

Based on contrast measures’ mean CON, a vector containing the
cumulative means for different t possible values is estimated based on
Eq. (15):

— k—1 Tcon (i). CON (i)
CON Y, ! Heon®@- CON®
—_ .
wi(j)

A similar vector for cumulative standard deviations was estimated as

described on Eq. (16):

T

/"1CMU) =

(15)

|(CON ()~ i, (1) s " Teon o

TBionli) = \/ ==
1

Egs. (15) and (16) are dependent on W;(j) values which are the
possible foreground cumulative probabilities. It was possible to observe
that, in all cases, an abrupt change on Wi(]’) occurred for a certain j
value. The foreground probability would go to zero when almost no
mounts were detected for that contrast level, leading to infinity values
for cumulative standard deviation.

A histogram with these cumulative values of &, was constructed
(Fig. 6) to estimate how standard deviation values were distributed
over all detected mounts on image. Through these histograms, it was
possible to observe that there always happened an abrupt change of the
d1c.n cumulative value corresponding to a j level, where the following
values would grow abruptly. That level was called as abrupt transition
value (at) in this work. This was considered as the transition which
would characterize the threshold level t for segmentation purposes.

The above histogram was turned into fuzzified values through a
recurrence relation designed in this investigation. The standard devia-
tion values correspondent to levels above abrupt transition were ap-
proximated to 1. The other fuzzy values were evaluated based on the
number of standard-deviation values (S,) bellow abrupt transition (at)
that are defined in Eq. (17):

(16)
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Fig. 6. Standard Deviation Logarithm (J,,,) histogram of the CON quantized
values - the standard deviation abrupt transition (at) in this example, occurs in
0.7 (j = 8, eighth quantized level).

So = Std(0) = D 81, ()

j=0
Std (j) = Std (j—1)—61,, (at—j + 1) 17)
Sty ) = 240

0

Eq. (18) presents an example of a typical result in two vectors that
represent left and right fuzzified standard deviations (Stdfyzzy.ier and
Stdfuzzy-rignd) Performed by Eq. (17) over all image. These fuzzified va-
lues are obtained and stored for ten discrete (0.0-0.9) values of Cony,,
to construct a histogram shown in Fig. 7, where all image Mounts are
considered.

(0.0, 0.03), (0.1, 0.09),
(0.2, 0.20), (0.3, 0.32),
(CONfuzzy, Stdsuzzy—iopr) = | (0.4, 0.45), (0.5, 0.58),
(0.6, 0.72), (0.7, 0.85),
(0.8, 1.0), (0.9, 1.0) (18)
(0.0, 0.01), (0.1, 0.07),
(0.2, 0.17), (0.3, 0.29),
(Confuzzy, Stdfuzzy—right) = (0.4, 0.42), (0.5, 0.56),
(0.6, 0.70), (0.7, 0.83),
(0.8, 1.0), (0.9, 1.0)

This approximation was done to be used by Fuzzy Logic System
indicating higher standard deviation values in the analyzed image. The
transition at is used to define the HIGH label to be associated with the
higher results for standard deviation values when the membership
function is defined.

08 1
0.7} 4

0.6 B

fuzzy-tott)

0.5 B

Fuzzified
Standard Deviations

(Std

04r

0.3 E
0.2 E
0.1 m 4
0
0.0 01 0.2 0.3 04 0.5

0.6 0.7 08 0.9

Quantized Contrast Measures (CON)

Fig. 7. Fuzzified Standard Deviation (Stdz—i) histogram of the CON quan-
tized values.
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Table 1
Inferences rules.

Simpler Rules

Rule 1 IF [CSD(left) is high] AND [CSD(right) is high] THEN (pixel is white)

Rule 2 IF [CSD(left) is high] AND [CSD(right) is mean] THEN (pixel is white)
Rule 3 IF [CSD(left) is mean] AND [CSD(right) is high] THEN (pixel is white)
Rule 4 IF [CSD(left) is mean] AND [CSD(right) is mean] THEN (pixel is white)

Rules with Additional Restrictions

Rule 5 IF [CSD(left) is mean] AND [CSD(right) is low] AND[u

(CSD(left)) = 0.5] AND [u(CSD(right)) < 0.5] THEN (pixel is white)
Rule 6 IF [CSD(left) is low] AND [CSD(right) is mean] AND[u

(CSD(left)) < 0.5] AND [u(CSD(right)) = 0.5] THEN (pixel is white)
Rule 7 IF [CSD(left) is low] AND [CSD(right) is high] AND[un

(CSD(left)) < 0.5] AND [u(CSD(right)) = 0.5] THEN (pixel is white)
Rule 8 IF [CSD(left) is high] AND [CSD(right) is low]AND[un

(CsD(left)) = 0.5] AND [u(CSD(right)) < 0.5] THEN (pixel is white)

2.5. Fuzzy contrast standard deviation (FUZCON)

Although each image line has a sequence of Cons with different
values, it is not possible to detect bubbles based only on this informa-
tion. Lighting differences during image acquisition, irregular shapes,
different bubble sizes, and thicknesses are not fully described by this
feature.

Fuzzy Logic is useful to deal with the uncertainty of various
thresholds that may be found during bubble edge identification process.
The FUZCON method was based on Fuzzy Logic to adapt the contrast
values to dynamic range classes which improve computer processing
reducing inference rules when compared to methods using fixed range
classes. Dynamic range classes were implemented using additional re-
strictions shown in Table 1 when leading with different contrast ranges.

Following the Contrast properties' feature matrix implementation
phase, a fuzzy system was constructed based on fuzzified contrast va-
lues Cong,,, into membership degrees obtained through a fuzzy fea-
tured function.

The development of this edge detection system followed several
investigations that have explored Fuzzy Logic advantages (Abdallah,
2009; Barkhoda et al, 2009; Patel et al., 2011; Jayachandran et al.,
2010). The techniques presented in Barkhoda et al (2009) and Patel
et al. (2011) use gradient and standard deviation as parts of two
membership functions. Those techniques have shown the effectiveness
of using standard deviation to find the gradient of an image. The fuzzy
system, developed here, uses a statistical approach of the Contrast
Standard Deviation (CSD), labeled Dynamic Fuzzification Base (DFB),
which is based on the method described by Barkhoda et al (2009).

The DFB system is a self-adaptive method that analyses each image
through dynamic membership functions. These membership functions
are necessary to deal with the difficulty in detecting the lighting in-
homogeneity and oscillations.

Two membership functions are defined for the left and the right
sides. Fig. 8 shows an example of membership functions, described in
Egs. (14)-(16). These functions are defined based on five parameters:

u(Con,m,.)?

1 LOwW MEAN HIGH

Fig. 8. Dynamic member function.
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(4, B, C, D, E) € [0.0, 1.0].

0, Confuzzy > C
(C —Con )
/"Law(confuw) = #, A< Confuw LC
1, Conpyzy S A
(19)
0, Conypyzyy < B
W, B < Conpyzgy < C
Mrtean (Confuzzy) = (D—Confizy)
“poc » <Oy <D
0, Conpyzy > D (20)
0, Confyzyy < C
(Con, -0)
l‘High(Co”fuzzy) = %, C< Confuw < E
1, Conyyzy > E (21)

From the standard deviations found for each Contrast (Con; and
Con,), it is possible to establish the A, B, C, D and E membership
function’s domain values for each Contrast. They are found by recursive
analysis (12), which comprises the self-adaptive method. First, the C
parameter is determined to be the closest to 0.5 Contrast Standard
Deviation value. In example shown on Eq. (13), these values correspond
to 0.4 of (0.4, 0.45) ordered pair in Con; and 0.5 of (0.5, 0.56) ordered
pair in Con,. Thus, the C parameters values settled to Con; and Con, are
0.4 and 0.5 values respectively. Thereafter, the other parameter values
are defined as:

o E refers to the highest Contrast Standard Deviation values found in
the image, which can be seen in Eq. (13) to be 1.0, corresponding to
abrupt transitions;

e B and D are the intermediate values between A and C and between C
and E respectively;

o A is the lowest Contrast Standard Deviation value found in image,
which corresponds to 0.1 as can be seen in Eq. (13), corresponding
to 0.09 and 0.07 values.

The fuzzy system’s inference rules are shown in Table 1, with four
simpler rules (rules 1-4) and four with additional restrictions for CSD_L
(CSD(left)) and CSD_R (CSD(right)) values (rules 5-8). Those restric-
tions were necessary to capture a smaller range to edge detection when
the pixel’s standard deviation values were classified as Low set in fuzzy
rules. Thus, these range allowed reducing the linguistic variable
number and consequentially the number of fuzzy rules.

3. Experimental results and discussion

The proposed algorithm Fuzzy Contrast Standard Deviation
(FUZCON) was applied to an image database created by instability
images of natural circulation flow acquired on an experimental circuit
under ambient pressure conditions. Most images were related to dif-
ferent phases called incubation and refill. These phases belong to
chugging instability cycles, which are divided in three phases entitled
as incubation, expulsion and refill periods, containing unstable flow
patterns, described in detail in other investigations (Andrade et al.,
2000; Mesquita et al., 2012). This choice of the phases allows observing
high densities of bubbles with different sizes. In the expulsion phase,
the slug flow is replaced by churn one, when it is not possible to observe
bubbles.

The images were obtained using a high resolution professional
camera with 21 megapixel CMOS sensor. This camera presents some
important features for image processing, such as, highlight tone
priority, high ISO noise reduction and lens peripheral illumination
correction. An EF 100 mm lens configuration was used: f/2.8L aperture
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with Macro IS USM lens, ISO 3200, manual focus, 1/8000s shutter
speed, and remote shutter. Backlight illumination used a 1000 W lamp
reflector with dimmer.

The acquisition time interval of one image to another was one
second during the experiment. The distance between the camera lens
and cylindrical tube were adjusted to obtain an estimated depth-of-field
of 2 cm. This controlled depth allowed focused images capturing of the
two-phase flow inside the tube. Depth-of-field calibration was done
using a focus pattern (ladder) beside the tube. Each ladder step had a
0.5 cm depth spacing. Analyzed images were organized in a database
containing 1789 images. These images were cropped and presented in
three basic resolutions: 2316 x 1208, 864 x 330, and 744 x 374.
Different spatial resolutions were used to evaluate the methodology
when applied to different bubble sizes.

The performance of the proposed edge detector was evaluated using
receiver-operating characteristics (ROCs) method to compare its per-
formance with some classical border detectors’ performance. This
comparison was based on images that were manually classified, which
are usually called Ground Truth (GT) images. GTs usually indicate an
ideal detection observation (Heath et al., 1998). This kind of compar-
ison results in relative rankings that do not change, even with different
GTs manually produced by different individuals or at different times.
The ROCs points’ absolute position may vary but the order of results is
stable (Heath et al., 1998).

ROC analysis involves four metrics: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). If a detector reports
an edge pixel and GT also reports an edge pixel, TP is increased. If a
pixel is reported in a GT area without pixels, FP is incremented.
Wherever there are no edge pixels in GT and detector, TN is in-
cremented. If there are pixels in the GT edges but not in the detector, FN
is incremented.

In the GT images, the 255 value (white) represents the edge pixels
and zero value (black) indicates regions without interest. The classical
edge detectors are based on image operators that produce grayscale
images within the [0, 255] interval. These 256 values have to be
transformed into a binary image classified as edge or non-edge pixel.
This is done using a threshold value above which pixels are considered
an edge. The classified image, then, is represented only by 255-valued
pixels (edge) and zero-valued pixels (non-edge). The chosen threshold
value used for the classical edge detectors in this ROC analysis was 50.
This choice was done based on an assessment criterion derived from
observation that pixels bellow this value were never part of ‘objects of
interest’ (bubbles) within used images.

It is important to emphasize that GTs were produced in this work
considering edges that were visually evaluated as ‘in focus’, as can be
observed in Fig. 9 (d and f). Focused bubbles are important to be de-
tected in order to enable further volume void fraction estimates. Images
were acquired purposely within a pre-determined depth-of-field as was
previously described.

High TP and TN values, associated with low FN and FP values, are
required for a detector to be considered as good. When (ROC’s graph
point is nearer to the (0, 1) point it means a higher TPR/FPR ratio
value, and thus an indication of a good classifier. The method is con-
sidered random when ROC’s values are near to the diagonal line from
the left bottom to the top right corner. Fig. 9 shows the grayscale image
extracts (with 2316 x 1208, 864 x 330, and 744 X 374 resolutions) of
the database captured images and their corresponding GT images.

The detection algorithm was implemented using Python program-
ming language and was applied to several images, in order to be
compared with classic edge detectors: Sobel, Laplacian of Gaussian
(LOG) and Watershed operators (Sobel, 1974; Marr and Hildreth, 1980;
Meyer, 1991). The Sobel and LOG masks are shown respectively in Egs.
(14) and (15), and can be implemented via convolution method in the
x- and y-directions.
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¢) D

Fig. 9. Ground Truth images (a, ¢ and e) corresponding to Grayscale image
extracts (b, d and f) GT with 2316 x 1208, 864 x 330, and 744 X 374 re-
solutions, respectively.
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The results are shown in Figs. 10-12. Fig. 10 presents detections
results of flow patterns with low void fraction two-phase in images.
Figs. 11 and 12 show the images of flow patterns with high void frac-
tion from the refill-incubation instability transition phase. These last
images (Figs. 11 and 12) present many compacted bubbles, which re-
present a major challenge for detection algorithms. The proposed al-
gorithm has obtained satisfactory results for all analyzed image types.

The Sobel operator highlights bubbles that can be identified through
well-connected pixels presenting different intensities. Stronger in-
tensities are related to main edges but Sobel detector gives several

Fig. 10. Simple Image. a) Negative Image. b) Sobel Edge Detector. ¢) LOG Edge
Detector. d) Watershed e) Fuzzy Contrast.
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e)
Fig. 11. Refill Incubation Image. a) Negative Image. b) Sobel Edge Detector. c)
LOG Edge Detector. d) Watershed e) Fuzzy Contrast.

e)

Fig. 12. Refill Incubation Image. a) Negative Image. b) Sobel Edge Detector. c)
LoG Edge Detector. d) Watershed e) Fuzzy Contrast.

output details even in image regions with blurred bubbles. This detector
also has difficulty in identifying edges where low contrast is present.
Additionally, the operator could isolate inner bubble shadows, resem-
bling a double edge, shown in Fig. 10b.

Watershed-based segmentation method consists in finding image
features called “water lines” that are defined as the limits of a “flooding
process”, when the top-down image topology is filled until a stage is
obtained only where dam tops can be observed (Gonzales and Woods,
2007). At this point, theses dam tops represent desired segmentation
corresponding the watershed lines.

More stable segmentation results can be obtained through this al-
gorithm when connected segmentation edges are wanted, such as in
very close bubble edge detection. However, when this technique
(Meyer, 1991) was applied to the images on this investigation, dis-
connected paths were formed, occurring over-segmentation, as shown
in Figs. 9d, 10 and 11. This over-segmentation originated from many
tone variations in the background, inside the bubbles and in their edges.

The LOG operator, at its first step, uses Gaussian operator smoothing
in order to reduce image noise followed by a Laplacian operator ap-
plication. This operator is mainly based on the Gaussian filter standard
deviation, that is, the higher the value of this standard deviation, the
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wider the filter matrix should be, which results in a more smoothed
image, making the task of edge detection more difficult in images with
high void fraction. Although it provides good results, this smoothing
has destroyed some bubbles (Fig. 10c), and LOG operator could not
detect all bubble edges, as shown in Figs. 11c and 12c. This limitation
resulted from bubble edge thickness being larger than the filter mask

(3 x 3) used.

Knowing that one of the important points of the segmentation task is
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Table 2
ROC points.
Edge Detectors Fig. 13a Fig. 13b Fig. 13c
Proposed (FUZCON) TPR = 0.30 TPR = 0.59 TPR = 0.52
FPR = 0.048 FPR = 0.25 FPR = 0.29
TPR/FPR = 6.25 TPR/FPR = 2.36 TPR/FPR = 1.79
Sobel TPR = 0.61 TPR = 0.24 TPR = 0.07
FPR = 0.98 FPR = 0.99 FPR = 0.99
TPR/FPR = 0.62 TPR/FPR = 0.24 TPR/FPR = 0.07
LoG TRP = 0.22 TPR = 0.43 TPR = 0.22
FPR = 0.07 FPR = 0.32 FPR = 0.19
TPR/FPR = 3.14 TPR/FPR = 1.35 TPR/FPR = 1.16
Watershed TRP = 0.31 TPR = 0.34 TPR = 0.36
FPR = 0.44 FPR = 0.21 FPR = 0.22

TPR/FPR = 0.71 TPR/FPR = 1.62 TPR/FPR = 1.64

to find finer edges, instead of the details of their nearest neighbors
(Alshennawy and Aly, 2009), the proposed algorithm, differently from
previous methods, considers the standard deviations for each Contrast
value found. FUZCON does not use smoothing method, even when there
are background noises, noises inside the bubbles, and regions with
different contrast levels.

The proposed detector achieved better performance according to
the ROC analysis results (Bowyer et al., 2001) shown in Fig. 13, where
the higher TPR/FPR proportion represents better results due to higher
TPR values associated with lower FPR values. Table 2 presents the
coordinate points (TPR and FPR) and its TPR/FPR ratios of ROC’s
analysis illustrated in Fig. 13a—c. This algorithm has shown superior
robustness to noise (Fig. 10e, 11e and 12e), as indicated by ROCs points
in Fig. 13b and c, when detectors are applied to the high-density two-
phase flow bubble images chosen for this work.

Although FUZCON could find a larger number of single and ag-
glomerated bubbles, which was associated with high TPR values, and
was able to subtract the background without damaging most of the
continuous bubble edges, LOG operator has presented slightly better
detection results (Fig. 13a) in homogeneous images where it is not
possible to identify large lighting differences as in Fig. 10a. Sobel op-
erator attained high TPR values however there was a high FPR asso-
ciated, representing the detection of borders inside bubbles.

The FUZCON accuracy is strongly affected by statistical analysis
performed on each gradient image. Consequently, when images include
a large number of compacted bubbles, shown in Figs. 11a and 12a,
identification performance is improved: the number of bubbles detected
(high TP rate) with few errors (low FP rates), as shown in Fig. 13b and
c.

4. Conclusions

A new approach to bubble segmentation for gas-liquid two-phase
bubbly flow on natural circulation experiments, labeled FUZCON, is
presented. It was applied to two-phase flow images using image pro-
cessing and pattern recognition techniques.

The images were chosen from an experimental database containing
1798 images with different resolutions. An image operator Con was
proposed based on a Contrast function definition. After image pre-
processing, a Contrast Standard Deviation (CSD) methodology was
developed to allow the detection of abrupt transition of the statistical
distribution of evaluated CSD values through whole image. Image
contrast standard deviation analysis was implemented through a self-
adaptive Fuzzy Logic inference system using dynamic membership
functions for each analyzed image.

Edge detection performance was evaluated using the ROC analysis
method for an initial comparison with the traditionally used methods
for edge detection applied to bubbles inside high-density two-phase
flow images. This comparison was based on manually constructed
Ground-Truth images. The results showed that the proposed detector,
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without the need to use smoothing algorithms and without human in-
tervention, could improve void fraction estimation on high-density two-
phase flow bubble images.
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