BR892111c

INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES

AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO

INJS-BR-- 1611

MEDIDA DE FRAÇÃO DE VAZIO EM ESCOAMENTO BIFÁSICO, GÁS-ÁGUA, EM TUBOS VERTICAIS USANDO ABSORÇÃO GAMA

RAIMUNDO DIAS DA SILVA

Dissertação apresentada como parte dos requisitos para obtenção do Grau de Mestre em Tecnologia Nuclear.

----- Orientador: Dr. José Antonio Diaz Dieguez

ţ,

S ENERCIA HE CLEAR SP

SÃO PAULO 1985

l ce::::

•

ATTENTION MICROFICHE USER,

The original document from which this microfiche was made was found to contain some imperfections that reduce full comprehension or some of the text despite the good technical quality of the microfiche itself. The failures may be:

- missing or illegible pages/figures;
- wrong pagination;
- poor overall printing quality, etc...

We normally refuse to microfiche such a document and request a replacement document (or page) from the national INIS Centre concerned. However, our experience shows that many months pass before such documents are replaced. Sometimes the Centre is not able to supply a better copy or, in some cases, the pages that were supposed to be missing correspond to a wrong pagination only. We feel that it is better to proceed with distributing the microfiche made cf these documents than to withhold them till the imperfections are removed. If the removals are subsequently made then replacement microfiche can be issued. In line with this approach then, our specific practice for microfiching such documents is as follows:

- 1. A microfiche of an imperfect document will be marked with a special symbol (black circle) on the left of the title. This symbol will appear on all masters and copies of the document (1st fiche and trailer fiches) even if the imperfection is on one fiche of the report only.
- 2. If the incorrectnesses are not too general the reason will be specified on a sheet such as this, in the space below.
- 3. The microfiche will be considered as temporary, but sold at the normal price. Replacements, if they can be issued, will be available for purchase at the regular price.
- 4. A new document will be requested from the supplying Centre.
- 5. If the Centre can supply the necessary pages/document a new master fiche will be made to permit production of any replacement microfiche that may be required.

The original document from which this microfiche has been prepared

has these imperfections:

missing pages/figures numbered: 89 Tabela B.G. wrong pagination poor overall printing quality combinations of the above other INIS Clearinghouse **I.A.E.A.**

INIS Clearinghous I.A.E.A. P.O. Box 100 A-1400, VIENNA AUSTRIA

A minha mãe, sogra, esposa e filhos

AGRADECIMENTOS

Quero aqui dedicar e expressar a minha gratidão e amizade a todos aqueles que estiveram direta ou indiretamente envol vidos na elaboração deste trabalho, em particular:

- À Comunidade técnico, científica e administrativa do IPEN-CNEN /SP, em especial aos colegas da Divisão de Reatores e Experi mentação Nuclear : Antonio Luiz Pires, Hertz Pasqualetto, Henrique Rozmyslak e Italo Salzano Junior pelo auxílio prestado;
- Aos colegas Carlos Alberto Rodrigues da Costa e Christovam Romero Romero Filho da "NPP" em serviço no reator;
- Aos colegas da IEO/OE, em especial ao Sr. Kuang Chun Sun e Gregório Lugo Postigo;
- Ao Dr. Roberto Longo Freitas pelo apoio científico;
- Aos meus amigos: Edson Kassar, Sheila Maria Diez e Tufic Madi Filho pela colaboração e amizade;
- De modo especial, a meu orientador e amigo, Dr. Josê Antonio Diaz Dieguez pelo apoio e orientação

De modo especial ao Criador por tudo que tendes concedido à humanidade.

"A origem do mundo material deve atribuir-se à inteligência dum poderosíssimo Ser, ..." (Isaac Newton)

"Cada descoberta nova da ciência é uma porta nova pela qual encontro mais uma vez Deus, o autor dela" (Albert Einstein) "O homem pediu a desintegração atômica, no intuito de sinhorear mais força, fim de comandar o progresso, e ela está no munco, ignorando-se que preço pagarã o Orbe Terredore, até que essa con guista seja respeitada tora de gualquer apelo à destruição"

(Emmanuel).

٠

R,

MEDIDA DE FRAÇÃO DE VAZIO EN ESCOAMENTO BIFASICO, GAS-AGUA,

E1 TUBOS VERFICAIS USANDO ABSORÇÃO GAMA

RAIMUNDO DIAS DA SILVA

<u>RESUMO</u>

No presente trabalho foram realizadas medidas de fração de vazio em escoamento bifásico água-nitrogênio, utilizando a técnica de absorção de raios gama. Foram simulados vários regimes de escoamento bifásico ascendente em tubo ci lindrico, variando-se as vazões de água e nitrogênio, respectivamente, de 0,13 a 0,44 m³/h e de 0,01 a 0,1 m³/h. Para cada condição de fluxo foi determinada a fração de vazio. A comparação entre os resultados obtidos e os dados de outros autores mostrou haver uma boa concordância.

TWO-PHASE FLOW VOID FRACTION MEASUREMENTS USING GAMMA RAY

ATTENUATION TECHNIQUE

RAIMUNDO DIAS DA SILVA

ABSTRACT

The present work deals with experimental void fraction measurements in two-phase water-nitrogen flow, bц using a gamma ray attenuation technique. Several upward twophase flow regimes in a vertical tube were simulated. The water flow was varied from 0.13 to 0.44 m³/h while the nitro gen flow was varied between 0.01 and 0.1 m³/k. The mean volu metric void fraction was determined based on the measured linear void fraction for each flow condition. The results were compared with other authors data and showed a good agreement.

<u>indice</u>

PÁGINA

1.	INTRODUÇÃO	01
	I.l - Considerações Gerais	01
	I.2 - Escoamento Bifásico em Tubos Verticais	02
	I.3 - Técnicas Utilizadas para Medida de Fração de Va-	
	zio	03
	I.4 - Objetivos do Trabalho	14
	I.5 - Apresentação da Dissertação	15
II.	DESENVOLVIMENTO TEÓRICO	16
	II.1 - Determinação da Expressão de Cálculo da Fração de	
	Vazio Linear	16
	II.2 - Métodos de Cálculo de Fração de Vazio Bidimensio nal	20
III	. ARRANJO EXPERIMENTAL	27
	III.l - Circuito Experimental	27
	III.2 - Sístema de Medidas de Radiação	30
IV.	FONTE DE RAIOS GAMA E TESTE DO SISTEMA DE MEDIDA	32
	IV.1 - Fonte de Raios Gama e Coeficiente de Absorção de Massa	32
	IV.2 - Dependência da Fração de Vazío Linear com a	
	Energia da Fonte e da Largura do Canal de Escoa- mento	36
	IV.3 - Erro Estatístico na Fração de Vazio Linear Devi- do à Sensibilidade de Detecção	39
	IV.4 - Atividade da Fonte de Raios Gama e Tempo de Con- tagem	41
	IV.5 - Influência do Tempo de Resolução do Detector no Cálculo da Fração de Vazio Linear	42

	IV.6 - Verificação da Reprodutibilidade do Sistema de	
	Medidas	44
v.	MEDIDAS E ANÁLISE DOS DADOS	47
	V.1 - Caracterização dos Regimes de Escoamento	47
	V.2 - Medidas de Fração de Vazio	48
VI.	CONCLUSÕES E SUGESTÕES	60
	VI.l - Conclusões	60
	VI.2 - Sugestões	60
REF	ERÊNCIAS BIBLIOGRÁFICAS	62
APÊ	NDICE A	68
Α.	ANÁLISE DE ERROS	69
	A.1 - Cálculo do Erro na Fração de Vazio Determinada por Somatória das Contagens	69
	A 2 Cálquia do Erro na Fração de Vazio Calquiada por	0,5
	$A.2 = Calculo do Erio na Flação de Vazio Calculada porIntegração Numérica de \overline{R}g_1$	74
	A.3 - Cálculo do Erro Estatístico no Fluxo de Massa .	80
APÊ	NDICE B	82
в.	MEDIDAS EXPERIMENTAIS	83
	B.l - Medidas no Plano Inferior	83
	B.2 - Medidas no Plano Superior	86
APÉ	NDICE C	94
c.	CURVAS DE CALIBRAÇÃO	95
	C.1 - Calibração dos Rotâmetros	95
APE	ENDICE D	98
D.	CÁLCULO DA BLINDAGEM DA FONTE	99

ÍNDICE DE FIGURAS

<u>PÁGINA</u>

.

FIGURA	1.1	-	Regimes de Escoamento Bifásico em Tubos	
			Verticais	04
FIGURA	2.1	-	Modelo de Distribuição Bifásica Dinâmico	17
FIGURA	2.2	-	Modelo de Distribuição Bifásica em Série	20
FIGURA	2.3	-	Modelo de Distribuição Bifásica em Para- lelo	20
FIGURA	2.4	- (Corte Transversal da Secção de Testes	21
FIGURA	2.5	-	Área da Secção de Testes do Circuito Gás- Água "Vista" pelo Detector, Ponto a Ponto	24
FIGURA	3.1	-	Esquema do Circuito Gás-Água	28
FIGURA	3.2	-	Bocal Difusor para Injeção de Gás	29
FIGURA	3.3	-	Esquema do Sistema de Medida de Radiação	30
FIGURA	4.1	-	Coeficientes de Atenuação de Massa para Raios Gama em Água	35
FIGURA	4.2	-	Coeficiente de Atenuação Total para Raios Gama em Água	36
FIGURA	4.3	-	Variação de ΔRg_1 Versus Rg_1 , Mostrando a Dependência da Fração de Vazio para Fó tons com Energias de 60 keV ($\mu/\rho = 0,196$ cm²/g) e 600 keV ($\mu/\rho = 0,0896$ cm²/g) à Pressão Atmosférica	37
FIGURA	4.4	-	Variação de ΔRg ₁ Versus a Largura do Ca- nal X _d , à Pressão Atmosférica	38

PÁGINA

FIGURA	5.1	-	Mapa de Escoamento Bifásico	49
FIGURA	5.2	-	Curvas de Perfil de Escoamento para T <u>u</u> bo Cheio de Água e Tubo Vazio, Fluindo uma Mistura Gás-Água (0,1 m³/h de gás e 0,15 m³/h de água)	50
FIGURA	5.3	-	Fração de Vazio Média Bidimensional,Ca <u>l</u> culada pela Integração de R̄gı nos Pla- nos Inferior e Superior (Q _g = 0,15 m³/h).	54
FIGURA	5.4	-	Fração de Vazio Média Bidimensional,Ca <u>l</u> culada pela Somatória das Contagens nos Planos Inferior e Superior (Q _l = 0,15 m³ /h)	55
FIGURA	5.5	-	Fração de Vazio Média Bidimensional no Plano Inferior (Q _l = 0,15 m³/h)	56
FIGURA	5.6	-	Fração de Vazio Média Bidimensional no Plano Superior (Q _l = 0,15 m³/h)	57
FIGURA	5.7 K	-	Comparação entre a Fração de Vazio Mé - dia Bidimensional Calculada por Integr <u>a</u> ção Numérica, por Somatória e a Calcul <u>a</u> da por Roumy /39/ no Plano Inferior	58
FIGURA	5.8	-	Comparação dos Erros Estatísticos Totais na Fração de Vazio, Calculados por Inte- gração e Somatória, com os de Hooker e Popper /21/	59
FIGURA	A.1	-	Erro Percentual Total na Fração de Vazio, Rg,, Calculada por Somatória das Conta - gens em Função da Fração de Vazio	73
FIGURA	A.2		Erro Percentual Total na Fração de Vazio, R̄g,, Calculada por Integração Numérica em Função da Fração de Vazio	78

FIGURA A.3	-	Erro Percentual Total no Fluxo de Massa, G _g , em Função da Vazão de Gás, Q _g	81
FIGURA C.1	-	Curva de Calibração do Rotâmetro de Água	95
FIGURA C.2	-	Medidor de Vazão de Gás Tipo Bolha de S <u>a</u> bão	96
FIGURA C.3	-	Curya de Calibração do Rotâmetro de Gás	97

8

INDICE DE TABELAS

PÁGINA

.1 -	Comparação entre as Técnicas de Medida de Fração de Vazio em Escoamentos Bif <u>á</u> sicos	06
.1 -	Algumas Fontes de Raios Gama Disponí - veis Comercialmente	33
.2 –	Influência do Tempo de Resolução no Cálculo da Fração de Vazio Linear	44
.1 -	Diferenças entre os Valores de Rg, Ob- tidos, no Plano Inferior, e osCalcul <u>a</u> dospor Roumy /39/	52
.1 -	Erros Estatísticos na Fração de Vazio Calculada por Somatória das Contagens	73
.2 -	Valores das Derivadas Numéricas das Contagens em Relação à Posição y, Usa <u>n</u> do Diferença para Frente	76
.3 -	Valores do Erro EstatÍstico, para cada Vazão de Gás, Calculado pela Expressão (A.20), Termo a Termo e o Erro Percen- tual total	79
.4 –	Erro Percentual do Fluxo de Massa	81
.1 -	Contagens de Radiação Gama Emergente p <u>a</u> ra Tubo Cheio de Água e Tubo Vazio (Pl <u>a</u> no Inferior)	83
.2 -	Contagens de Radiação Gama Emergente <u>pa</u> ra Escoamento Bifásico ($Q_g = 0,15 \text{ m}^3/\text{h} e$ Q_g variando de 0,01 a 0,10 m ³ /h) (Plano Inferior)	84
	1 - 1 - 2 - 1 - 1 - 1 - 2 - 3 - 3 - 4 - 1 - 2 - 3 -	 Comparação entre as Técnicas de Medida de Fração de Vazio em Escoamentos Bifá Sicos Algumas Fontes de Raios Gama Disponí - veis Comercialmente Influência do Tempo de Resolução no Cálculo da Fração de Vazio Linear Diferenças entre os Valores de Rg, Ob- tidos, no Plano Inferior, e osCalcula dospor Roumy /39/ Erros Estatísticos na Fração de Vazio Calculada por Somatória das Contagens Valores das Derivadas Numéricas das Contagens em Relação à Posição y, Usan do Diferença para Frente Valores do Erro Estatístico, para cada Vazão de Gás, Calculado pela Expressão (A.20), Termo a Termo e o Erro Percen- tual total Erro Percentual do Fluxo de Massa Contagens de Radiação Gama Emergente pa ra Tubo Cheio de Água e Tubo Vazin (Pla no Inferior) Contagens de Radiação Gama Emergente pa ra Escoamento Bifásico (Q₁ = 0,15 m³/h e Q_g variando de 0,01 a 0,10 m³/h) (Plano Inferior)

TABELA B.3	-	Frações de Vazio ($\overline{R}g_2$), $Q_{g}=0,15 \text{ m}^3/\text{h}$ constante (Plano Inferior)	86
TABELA B.4	-	Contagens de Radiação Gama Emergente p <u>a</u> ra Tubo Cheio de Água e Tubo Vazio (Pl <u>a</u> no Superior)	86
TABELA B.5	-	Contagens de Radiação Gama Emergente p <u>a</u> ra Escoamento Bifásico (Q _g = 0,15 m³/h e Q _g variando de 0,01 a 0,10 m³/h) (Plano Superior)	87
TABELA B.6	-	Frações de Vazio (R̃g,), Q _l = 0,15 m³/h con <u>s</u> tante, (Plano Superior)	88
TABELA B.7	-	Regimes de Escoamento Bifásico Observa- dos Visualmente	88
TABELA D.1	-	Taxa de Dose Absorvida para Trabalhadores	99
TABELA D.2	-	Taxa de Dose na Superfície da Blindagem	101

.

¢

NOMENCLATURA

VARIA	UNIL	<u>:s</u>	
A	- área transversal da secção de testes	m²	
в	- fator de build-up	-	
с	- contagem de radiação detectada	s ⁻¹	
c _T	- contraste	-	
D	- diâmetro interno da secção de testes	m	
e	- taxa de emissão da fonte	-	
e0	- energia de emissão da fonte	eV	
^E T	- erro de truncamento	-	
f	- eficiência de detecção do cintilador	-	
F _G	- fator geométrico	-	
G	- fluxo de massa	kg m ⁻ 's	5 1
h	- distância entre os pontos de medida	m	
Н	- distância fonte-detector	m	
I	- taxa de dose absorvida	Rem . s	5-1
J	- velocidade superficial	m.s	- 1
m	 número de pontos base (número de cordas onde são realizadas medidas 	-	
n	- número de medidas por ponto-base	-	
N	 itensidade de radiação gama emergente do ma- terial absorvente 	cm ⁻² .	s ⁻¹
^N i	 intensidade de radiação gama incidente no ma terial absorvente 	cm ² .	s ⁻¹

.

VARIÁVEIS

UNIDADES

-

и j	 intensidade de radiação gama emergente, numa dada posição, para a secção de testes conten 	
	do gás, água ou uma mistura bifásica	cm ² .s ¹
Nı	 intensidade de radiação gama emergente quan- do a secção de testes contém apenas gás 	cm ² .s ¹
No	 intensidade de radiação gama emergente quan- do a secção de testes contém apenas água 	cm ⁻² .s ⁻¹
P	- probabilidade	-
Q	- vazão volumétrica	m'. s ⁻¹
r	- raio do detector	m
R	- raio da secção de testes	m
Rg ₁	- fração de vazio linear	-
Rg,	- fração de vazio bidimensional	-
S	- sensibilidade de detecção de vazio	-
t	- tempo	S
Т	- intervalo de tempo	S
х, Х	 espessura do material atravessado pelo feixe de raios gama 	m
У	 distância do feixe de raios gama ao centro ca secção de testes 	m
α	- atividade da fonte	Ci
Δ	- diferença	-
σ	- flutuação estatística	-
ρ	- densidade específica do material	Kg . m ⁻ '
τ	 coeficiente de absorção de massa por efeito fotoelétrico 	cm ² .g ⁻¹

VARIÁVEIS

۲	- coeficiente de absorção de massa por efeito fotoelétrico	cm ² .g ⁻¹
ζ	- tempo de resolução do cintilador	S
к	 coeficiente de absorção de massa por efeito Compton 	cm ² .g ⁻¹
χ²	- teste do gui quadrado	-
μ	- coeficiente de absorção de radiação linear	cm ⁻¹
μ/ρ	- coeficiente de absorção de massa do material	cm ² .g ⁻¹

SUBSCRITOS

- a absorção
- d mistura bifásica
- g fase gasosa
- I método de cálculo por integração
- 1 fase líquida
- p parede
- R cálculo por Roumy
- S método de cálculo por somatória

CAPITULO I

I. INTRODUÇÃO

I.1 - CONSIDERAÇÕES GERAIS

A importância do estudo de escoamentos bifásicos vem da ocorrência comum de escoamentos simultâneos de um líquido e de um gás (vapor) em vários equipamentos de uso industrial, como caldeiras, condensadores e trocadores de calor.

Na área nuclear, os escoamentos bifásicos ocorrem no próprio núcleo dos reatores tipo BWR ("Boiling Water Reactor") e nos geradores de vapor dos reatores tipo PWR ("Pressurized Water Reactor").

Os fenômenos dos escoamentos bifásicos governam,também, muitos processos importantes relacionados com a segurança dos reatores tipo água leve (PWR e BWR). Nestes reatores, é ne cessário determinar os fluxos de massa críticos na mistura líquido-vapor como parte da análise de segurança. Na análise de aci dentes de perda de refrigerante ("LOCA-Loss of Coolant Accident") nos reatores a água leve, o conhecimento do comportamento termohidráulico dos escoamentos bifásicos é de fundamental importân cia, principalmente durante a fase de reinundação do núcleo/7,15/. Para a validação e desenvolvimento de modelos teóricos para escoamentos bifásicos é necessário conhecer parâmetros termohidrá<u>u</u> licos, tanto locais como globais. Destes parâmetros, a fração de vazio e a velocidade mássica dos fluídos são os mais importantes.

O conhecimento da densidade média de uma mistura bifásica é necessário para se prever as perdas de pressão por aceleração e hidrostática. Em escoamentos vapor-líquido, as velocid<u>a</u> des médias das duas fases, baseadas na área da secção tranversal de cada fase, geralmente não são iguais. Por causa desse escorr<u>e</u> gamento ("slip"), a fração de vazio real da secção tranversal do tubo ocupada por cada fase difere da calculada com base nos vol<u>u</u> mes de gás e líquido que entram no tubo. Coto res loado, a lensi dade média da mistura não pode ser calculade tendo como base somente a cualidade (fração mássica do vapor), mas requei, também, o conheci ento da fração de vazio (tração da secção transversa) do tubo ucupado por vapor). A medida da fração de vazio, então, e um parametro importante para prever a hidráplica dos sistemas de escoamento bifásicos, uma vez que sem ela as contribuições acele rativa e hidrostática para a queda de pressão não podem ser evaliadas /3/.

Ao lado da necessidade da medida de fração de vazio em escoamentos bifásicos, é de fundamental importância o conheci mento do regime de escoamento da mistura gás-líquido ou líquidovapor, de modo a permitir o desenvolvimento de correlações empíricas para a perda de pressão e transferência de calor.

I.2 - ESCOAMENTO BIFÁSICO EM TUBOS VERTICAIS

Escoamento simultâneo de um gás e um líquido ou de um líquido e seu vapor em um canal pode apresentar muitas formas no que se refere ao formato e velocidade das bolhas. Rouhani e Sohal /33/ apresentam uma revisão geral sobre as pesquisas mais relevantes na área de escoamentos bifásicos, desenvolvidas duran te os últimos 30 anos.

Num escoamento bifásico, gás-água ou vapor-água,concorrentes, ascendentes, os regimes de escoamento classificam -se em /9, 32, 38, 43, 47/:

a) Regime a bolhas

£

- b) Regime pistonado ("slug")
- c) Regime semianular
- d) Regime anular

A) REGIME A BOLHAS

O regime a bolhas se caracteriza por pequenas bolhas

-02-

de vapor ou gás distribuídas na fase líquida geralmente de forma uniforme e constante. Em tubulações longas, as bolhas tendem a se aglomerar formando bolhas com diâmetros maiores, conforme Figuras (l.l.a e l.l.b).

B) REGIME PISTONADO ("SLUG")

O regime pistonado poderá ser observado em pontos ma is acima do ponto de injeção de gás, aumentando o fluxo de gás. Es te regime consiste de um trem de bolhas grandes e regulares; cada uma destas bolhas ocupa o diâmetro do canal quase que por com pleto, deixando apenas uma camada líquida junto ã parede e seu comprimento é várias vezes o diâmetro do canal, Figura 1.1.c.

C) REGIME SEMIANULAR

O regime semianular é atingido quando se aumentam os fluxos de gás e também de líquido obtendo-se, assim, uma certa instabilidade no escoamento que alguns pesquisadores chamam de "churn-turbulent flow" /33/, Figura 1.1.d.

D) REGIME ANULAR

O regime anular é obtido quando se aumenta o fluxo de gás, mantendo o fluxo de líquido constante e baixo, onde ambos os fluxos de gás e líquido são contínuos. Se for aumentado o fluxo de gás ainda mais, arrancam-se gotas de líquido do filme junto à parede que se dispersam no meio gasoso produzindo, assim, o escoamento chamado anular misto, Figura 1.1.e.

1.3 - TÉCNICAS UTILIZADAS PARA MEDIDA DE FRAÇÃO DE VAZIO

Muitas técnicas tem sido desenvolvidas para a medida da densidade bifásica ou fração de vazio em um sistema de escoamento bifásico /20, 23, 52/. Um resumo das principais técnicas

usadas para medidas de fração de vazio é dado a seguir. Na Tabela 1.1 é apresentada uma comparação sucinta entre as técnicas de medida de fração de vazio em escoamentos bifásicos.

I.3.1 - Sonda de Condutividade

A sonda de condutividade, como aplicada para medida de fração de vazio em escoamento bifásico, consiste de dois ele trodos inseridos na mistura bifásica. Se um potencial elétrico é aplicado entre os elementos, observa-se uma corrente elétrica;esta corrente é uma medida direta da condutividade da mistura bifásica entre os eletrodos. Isto, a seu turno, representa a concen tração volumétrica relativa dos fluídos condutores e não condutores, que são líquido e gás. Obviamente, a sonda de condutividade não pode ser usada para sistemas onde o líquido tem alta resist<u>i</u> vidade ou para sistemas onde não há substancial diferença entre as condutividades das fases.

A sonda de condutividade tem sido usada por vários pesquisadores, como relacionado por Dalhaye em /9/ e /20/. Welle /51/ realizou experiências à pressão atmosférica, em uma secção de testes vertical, fluindo gás-água, onde a fração de vazio mé dia bidimensional variou de 25 a 75%.

A sonda de resistividade também é utilizada para me dir a velocidade da interface entre as fases condutora e não condutora, que pode ser considerada como sendo a velocidade do gás para frações de vazio baixas.

I.3.2 - Anemômetro à Fio Quente

O anemômetro à fio quente consiste basicamente de um cilindro de vidro de pequeno diâmetro coberto com platina e cone<u>c</u> tado entre seus terminais a um fio condutor de eletricidade. Para utilizar a sonda, sua resistência tem que ser ajustada por me<u>i</u> o de uma corrente elétrica ao valor correspondente à temperatura desejada da sonda. As mudanças de temperatura da sonda são devi das à dissipação de potência (transferência de calor) a qual de-

TÉCNICAS DE MEDIDA DE FRAÇÃO DE VAZIO	MÉTODO	PRINCÍPIO	OBSERVAÇÕES
VOLUMÉTRICA	GLOBAL	Mede o volume de líquido ou de gás contido num dado volume da secção de teste: válvulas de fechamento rápido /39/	Apesar de interromper o escoamento a cada vez que se faz a medida, essa técnica tan- to é utilizada para medir a fração de va- zio em escoamento bifásico em regime esta- cionário como em transiente /20/
ÓPTICA	LOCAL OU GLOBAL	Mede a variação do Índice de refra ção do meio ou atenuação de um fei xe de luz	Interfere no escoamento mas é usada para me dir a fração de vazio local e global em es coamento bifásico em regime estacionário e a fração de vazio local em transiente / 1, 6, 20/
TÊRMICA	LOCAL	Mede a variação do coeficiente de trocas térmicas entre o líquido e o vapor: anemômetro`a fio quente	Pode ser usado em escoamento a dois compo- nentes ou a um componente com mudanças de fase. Para o primeiro caso, é possível me- dir a fração de vazio local, a velocidade instantânea e a turbulência da fase líqui- da,para o segundo caso tem sido muito difí cil obter resultados consistentes /9, 25/
FI ÉTRICA	LOCAL	Mede os tempos de residência das fases, uma vez que é um dispositi- vo "on-off"	A resposta eletrónica do sistema é compatí vel com o tamanho das bolhas, velocidade da interface e dimensões físicas da extre- midade da sonda Aplicável apenas para lá
ELETRICA	GLOBAL	Mede a variação da impedância do meio com a presença de vazios	quidos condutores de eletricidade. Aplicá- vel em transiente e em estado estacionário /1, 9,17 e 43/
RADIAÇÃO	GLOBAL	Através da absorção ou difusão da radiação, tal como: raios Χ, γ,β e nêutrons	Esta técnica se aplica a escoamentos bifá- sicos tanto em estado estacionário como em transiente. Mede, basicamente, a fração de vazio média linear ou a fração de vazio mé dia bidimensional /9, 20, 23/ tem a vanta- gem de não perturbar o escoamento

TABELA 1.1 - Comparação entre as técnicas de medida de fração de vazio em escoamentos bifásicos

-00-

pende da fase em contato com a sonda. Se ocorre mudança de resis tência como resultado de uma mudança de temperatura, a unidade de controle responderá à mudança com uma mudança na corrente com o objetivo de manter a temperatura da sonda constante /9/.

Lahey e Shiralkar /25/ usaram um anemômetro à fio quente para medir a fração de vazio local em um sistema adiabát<u>i</u> co de Freon-114. Como o Freon-114 não conduz eletricidade, foi possível usar um fio não revestido o que reduziu as perturbações no escoamento.

A maior vantagem do anemômetro à fio quente sobre a sonda de condutividade tipo agulha é que ele se autocontém e não requer um eletrodo secundário.

Como desvantagens podemos citar que além de provocar distúrbios no escoamento, os extremos são frágeis, tempo de vida curto e representa um custo inicial alto.

I.3.3 - Sonda Óptica

A sonda óptica pode ser usada para medir a fração de vazio local e a frequência de passagem de interfaces em escoa mento bifásico. Ela faz uso do fato que as duas fases tem diferentes índices de refração para um feixe de luz incidente. Como um exemplo típico destas sondas, o sistema de barra de vidro es tá descrito abaixo.

A sonda óptica consiste de uma barra de vidro de 2 milímetros de diâmetro, contendo internamente uma fibra óptica em "U", formando uma ponta mais ou menos cônica.

Numa das pontas da fibra óptica, uma lâmpada de iodo quartzo focaliza seu feixe de luz sobre esta ponta enquanto que na outra está localizado o fototransistor. A luz é transmitida paralelamente ao eixo da barra até a ponta da sonda. Quando o feixe de luz atinge a superfície em um ângulo de 45° , ele emerge da sonda ou é refletido de volta, dependendo dos índices refrat<u>i</u> vos da sonda e dos materiais ao seu redor /9/, /20/. Com a sonda óptica medem-se frações de vazio médias locais, conforme estudado por Bayoumi and Charlot /6/.

O diâmetro da barra de vidro não é padronizado em 2 mm, conforme a aplicação se define o diâmetro da sonda, que vai depender da disponibilidade no mercado. Por exemplo, Bayoumi e Charlot mediram a fração de vazio local em um tubo de 16 mm de diâmetro interno, aquecido eletricamente, com uma sonda óptica c<u>u</u> jo diâmetro total era 1 mm e o diâmetro da ponta era 20 μ m.

I.3.4 - Válvulas de Fechamento Rápido

O volume total do líquido contido em um duto por onde a mistura bifásica flue pode ser obtido através de medidadire ta. Esta técnica requer duas válvulas de fechamento rápido para serem instaladas em cada lado da secção de testes. As válvulas quando abertas não devem perturbar o fluxo. Devem, também, ser capazes de bloquear o fluxo de líquido e gás rapida e simultanea mente. Após o fechamento das válvulas, o volume ou a massa de líquido na secção de testes é medido diretamente e comparado ao volume total da secção de testes para produzir a fração de volume média do líquido. A principal vantagem desta técnica sobre muitas outras é que ela pode ser usada com alta precisão, mesmo em geometrias complexas. A principal desvantagem é que ela dá somente valores de frações de vazio médias sobre o conduto todo e não pode ser usada para medir sua distribuição detalhada ou va riação temporal.

Esta técnica tem sido largamente usada em sistemas adiabáticos, particularmente a baixas pressões. Roumy /39/ util<u>i</u> zando esta técnica e a de queda de pressão estudou e correlacionou a fração de vazio com as velocidades superficiais dos fluídos para três diâmetros de tubo diferentes: 16, 20 e 32 mm, elaborando, para cada diâmetro, uma expressão que permite calcular a fração de vazio para o regime a bolhas independentes.

I.3.5 - <u>Técnica de Atenuação e Espalhamento de Radia</u> ção

O desejo de medir precisamente a fração de vazio em

sistemas visualmente opacos, sem provocar distúrbios no escoamen to, promoveu o uso de radiação como técnica de medida de fra ção de vazio. Esta técnica faz uso do fato que as duas fases tem diferentes capacidades de atenuação e espalhamento da radiação incidente. Alguns tipos de radiação que tem sido usadas no campo de escoamento bifásico são dados a seguir /9, 20, 23 e 52/.

I.3.5.1 - Técnica de Atenuação de Partícula β

Perkins e outros /35/relataram a possibilidade de usar partículas beta para medir fração de vazio em escoamento bi fásico. Diferente dos raios gama, as particulas beta não pene tram a matéria tão bem quanto aquelas e, assim, seu alcance em meios hidrogenados é relativamente curto. Como um exemplo típico, alguns centimetros de água podem parar completamente um feixe de partículas beta de 2 MeV. Contudo, existem duas vantagens princi pais das partículas beta em relação às gama como uma ferramenta de diagnóstico da fração de vazio. Primeiro, como indicado por Perkins e outros /35/, as particulas beta apresentam maior sensibilidade (aproximadamente 70 vezes mais) e, segundo, a blindagem não é obstáculo como no caso das fontes de raios gama de meia vi da grande. Entretanto, a alta atenuação sofrida pelas partículas beta em materiais densos representa a maior desvantagem. Isto vem limitar a espessura do meio e das paredes do duto e impõe um limite mínimo no valor da fração de vazio.

Além disso, uma fonte radioativa grande e compacta é requerida para se obter um feixe de alta intensidade. Isto é essencial para prover um fluxo de partículas suficientemente alto incidindo no detector com o objetivo de se obter resultados estatisticamente bons. Por outro lado, a alta intensidade aumenta a fração de partículas beta que é absorvida pelo próprio material da fonte (efeito de auto-blindagem). Assim, um tamanho de fonte adequado deve ser determinado com o objetivo de otimizar a intensidade do feixe /9, 20/.

I.3.5.2 - Técnica de Atenuação e Espalhamento de Nêu

trons

O uso de nêutrons para medidas de fração de vazio em reatores nucleares foi sugerido por Untermyer /49/. Seguindo a sugestão de Untermyer, Thie e outros /46/ mediram a razão de cád mio de fios de cobalto os quais foram colocados em várias posi -;ões do núcleo do reator e relacionaram estas razões com os valo res das frações de vazio local.

Sha e Bonilla/42/ usaram um feixe de nêutrons emitidos por um isótopo radioativo para medir valores de fração de va zio de até 25% em uma secção de testes tipo multi-barras. Eles indicaram que a técnica de atenuação de nêutrons foi sensível o suficiente para detectar valores de fração de vazio da ordem de 3%. Dissolvendo boro na mistura água-vapor, o coeficiente de at<u>e</u> nuação para nêutrons térmicos pode ser sensivelmente aumentado ; assim, a sensibilidade aumenta razoavelmente.

O erro experimental em medidas de fração de vazio, in troduzido por flutuações próprias do escoamento bifásico, foi in vestigada por Harms e Forrest /18/. Suas análises demonstraram que estas flutuações resultariam em um substancial erro (maior que 40%) na fração de vazio medida. Como indicado por Harms e Forrest /13/ este tipo de erro na fração de vazio é comum a to das as técnicas de atenuação de radiação.

A técnica de medida de fração de vazio por espalha mento em vez de localizar o detector de nêutrons alinhado com o eixo do feixe incidente, como na técnica de atenuação, deve -se posicioná-lo com seu eixo formando um ângulo com o feixe de nê<u>u</u> trons para contar o número de nêutrons espalhados naquela dire ção.

Banerjee eoutros /4 / investigaram a possibilidade de usar a técnica de espalhamento de nêutrons rápidos para determinação da fração de vazio em escoamento bifásico usando modelos de alumínio e água para simular os regimes anular e estratificado e depois água e ar para simular vários regimes de escoamento, eles concluíram que havia boa concordância entre os valores medidos e os valores reais para o escoamento ar-água e que havia pequenas discrepâncias para o sistema de teste com moldes de alumínio, da<u>n</u> do valores abaixo do real para o regime extratificado.

Longo /27/, utilizando a técnica de espalhamento de

-10-

nêutrons, tendo um reator como fonte de néutrons térmicos, obteve bons resultados, principalmente para nêutrons térmicos, na medida da fração de vazio, com um ângulo de espalhamento de - 30° em relação ao feixe de néutrons.

I.3.5.3 - Técnica de Atenuação de Raios X

O uso de um tubo de raios X como uma fonte radioativa para medir fração de vazio em escoamento bifásico tem sido estud<u>a</u> do por muitos pesquisadores, entre eles pode-se citar Jeandey/22/ que utilizou um densitômetro multifeixe, que com seus 31 feixes varria de uma só vez uma dada secção transversal do tubo.

Malaviya e Lahey /28/ desenvolveram uma base matemát<u>i</u> ca para estimar o erro na medida da fração de vazio média linear $(\overline{R}g_1)$, utilizando um sistema com feixe duplo de raios X com objetivo de eliminar os efeitos das flutuações da fonte de raios X. Eles chegam à conclusão que quanto menor a fração de vazio maior será a porcentagem de erro, mas que o erro pode ser minimizado a<u>u</u> mentando a taxa de contagem.

I.3.5.4 - <u>Técnica de Atenuação e Espalhamento de Raios</u> Gama

As técnicas de atenuação de raios X e raios gama empregam essencialmente os mesmos conceitos fundamentais. Uma vez que um feixe de raios gama pode ser obtido da desintegração nuclear de isótopos radioativos naturais, sua intensidade depende do tempo, em maior ou menor proporção, dependendo de sua meia-vida. Enquanto as fontes de meia-vida curtas requerem calibrações constantes, as de meia-vida longas e altas atividades são de difi cil manuseic. A principal desvantagem da técnica de atenuação de raios gama deve-se ao seu longo alcance em materiais hidrogenados o qual coloca um limite inferior na espessura do meio e um limite superior no valor da fração de vazio, dependendo da energia da fonte. Além disso, as paredes do duto provocam uma atenuação considerável no feixe. Entretanto, a alta capacidade de penetração de um feixe de raios gama em materiais hidrogenados permite o seu uso para medir fração de vazio até em geometrias complexas /2/.

Perkins e outros /35/ relataram que a técnica de atenuação de raios gama seria usada com razoável precisão em medidas de fração de vazio para os vazios distribuídos homogeneamen te com caminho de atenuação equivalente em água, maior que uma polegada e os valores das frações de vazio maiores que 25%.Para sistemas com menor fração de vazio, esta técnica não oferece su ficiente precisão. Entretanto, a técnica de atenuação tem sido desenvolvida ao longo do tempo e a precisão com que a fração de vazio pode ser medida tem sido aperfeiçoada consideravelmente desde então.

Uma série de testes feitos usando modelos de lucite (acrílico) foi conduzido por Cook /8/ para medir a fração de va zio em várias distribuições radiais das fases usando a técnica de atenuação de raios gama. Os resultados indicaram que o erro entre a fração de vazio medida e a real aumenta com o aumento do espaço do canal-detector e com a diminuição da distância fonte radioativa-canal. Foi observado erro de até 93%; Egen e outros /11/, obtiveram resultados similares; contudo, os modelos de lucite estudados por Cook e Egen representam casos extremos de distribuições preferenciais em escoamento bifásico, só obtidas em escoamento anular.

Hooker e Popper /21/ efetuaram uma análise de erro para a técnica de atenuação gama e concluíram que para frações de vazio menores que 10% o erro na medida da fração de vazio se torna muito grande (por exemplo, para fração de vazio de 5% o erro é maior que 50%). Para frações de vazio maiores, o erro diminui com o aumento da fração de vazio, ficando por volta de 5% quando a fração de vazio tende a 100%.

Petrick e Swanson /36/ efetuaram uma comparação entre as técnicas "one shot" e a "traversing", de atenuação de raios gama, usando modelos de lucite. Eles concluiram que na faixa de fração de vazio entre 16 e 61% o desvio médio para a técnica "one shot" foi de 36,5% e de 7,3% para a técnica "tra versing".

Gardner e outros /14/ testaram a téchica de atenuação de raios gama "one shot" usando cilindros de lucite os guais si mularam os dois extremos de distribuição radial de fase; um tipo tinha simplesmente um furo no centro do tubo (escoamento anu lar) enguanto que o outro era uma barra sólida circular colocada

-12-

no centro do tubo (anular inverso). O erro na medida de fração de vazio foi da ordem de 10% para o primeiro tipo e de até 37% para o segundo.

Levert e Helminski /26 / sugeriram o uso de duas ener gias na técnica de atenuação de raios gama em vez da técnica con vencional de uma única energia. Esta análise mostrou que a nova técnica sugerida reduziria os erros na fração de vazio que sur gem das flutuações inerentes do escoamento bifásico. Entretanto, é importante notar a complexidade que pode resultar devido à dificuldade para diferenciar um fóton de alta energia espalhado e um da fonte de baixa energia não espalhado.

Heidrick e outros / 1% descreveram uma técnica, basea da no uso de três feixes de raios gama, para determinar a densidade e as distribuições radiais das fases em escoamento bifásico. Esta técnica envolve a suposição de um modelo a três parâmetros para descrever a distribuição radial fásica nos regimes estratificado, anular e a bolhas. Para examinar a validade da técnica proposta, eles usaram moldes de acrílico para simular os regimes estratificado e anular. A comparação entre as densidades rea is e as medidas indicou boa concordância; o maior erro encontrado foi de 25%.

Kennett e outros/24 / discutiram a vantagem de se usar a técnica de espalhamento de raios gama de alta energia sobre a técnica de atenuação de raios gama. Kennett e outros util<u>i</u> zaram um feixe colimado de raios gama, de energia da ordem de 9 MeV, extraído de um reator nuclear. Suas análises demonstraram que o "erro" na medida da fração de vazio com a técnica de espalhamento seria reduzido por um fator de 10, comparado com a técnica da atenuação.

Tsumaki e outros /48/ estudaram a distribuição de vazios em uma secção de testes de 2 polegadas de diâmetro interno pela técnica de tomografia computadorizada de raios gama. O erro máximo obtido no cálculo da fração de vazio para uma mistura ar-água, foi de $\stackrel{+}{=}$ 9%, para frações de vazio variando entre 5 e 50%.

Ferrel e Mc Gee /12/ desenvolveram um sistema de co limação dos raios gama tipo "one shot" capaz de medir a fração de

-13-

vazio com maior precisão que o "one shot" desenvolvido por Gardner,Bean e Ferrel /14/, independente da distribuição dos vazios no canal de escoamento. Com tal sistema eles obtiveram erros menores do que 5% para frações de vazio maiores que 35%.

I.3.6 - Técnica do Traçador Radioativo Dissolvido

Se uma quantidade de um traçador radioativo de meia vida curta é adicionada na fase líquida de uma mistura bifásica, a intensidade da radiação emitida dependerá da quantid<u>a</u> de de líquido na mistura.

Se o movimento do traçador radioativo for seguido ao longo do canal, a velocidade média do líquido pode ser dete<u>r</u> minada. Esta técnica pode dar aproximadamente o valor verdadeiro da velocidade média do líquido. Entretanto, o uso desta vel<u>o</u> cidade para o cálculo de fração de vazio necessita da suposição que as duas fases estão se movendo separadamente e cada fase tem uma velocidade constante. Esta suposição pode conduzir a valores imprecisos da fração de vazio. Além disso, a técnica do tr<u>a</u> çador radioativo só pode ser usada em sistemas fechados onde é possível recuperar o material radioativo. Esta técnica tem,ainda, uma desvantagem adicional que é produzir uma alta radiação de fundo e, assim, requerer uma blindagem para todo o arranjo experimental /9, 30/.

I.4 - OBJETIVOS DO TRABALHO

O objetivo principal deste trabalho é desenvolver uma técnica de medida de fração de vazio em escoamentos bifásicos, para aplicação no laboratório de termohidráulica do Departamento de Reatores e Circuitos Experimentais do IPEX-CNEN/SP.

Como foi visto no item precedente, nenhuma das té<u>c</u> nicas de medida direta da fração de vazio em escoamentos bifás<u>i</u> cos é universal. Para se . colher uma, devem ser considerados f<u>a</u> tores como: tipo de fração de vazio que se deseja medir (local ou global), regimes de escoamento, faixa de variação da fração de vazio e dependência tecnológica.

-14-

Para o presente trabalho foi escolhida a técnica de absorção gama por melhor satisfazer as seguintes exigências:

- permite a medida de fração de vazio local e global,
- não interfere no escoamento,
- não é sensível ao regime de escoamento bifásico,
- permite a medida numa ampla faixa de fração de vazio,
- tem facilidade e flexibilidade de instalação,
- apresenta facilidade e simplicidade de manuseio do sistema fonte-detetor e eletrônica associada,
- apresenta maior disponibilidade tecnológica.

1.5 - APRESENTAÇÃO DA DISSERTAÇÃO

O presente trabalho é composto de seis capítulos,dos quais a Introdução é o primeiro. Na Introdução é feito um resumo das principais técnicas de medida de fração de vazio. Na Introdução é, ainda, apresentado o objetivo do trabalho. No Capítulo II é apresentado o desenvolvimento teórico de cálculo da fração de vazio, ⁶utilizando a técnica de absorção de raios gama. A descrição do arranjo experimental e do sistema de medidas é feita no C<u>a</u> pítulo III. No Capítulo IV é feita a escolha da fonte de raios <u>ga</u> ma e o teste estatístico do sistema de medida. Os resultados exp<u>e</u> rimentais e sua análise são apresentados no Capítulo V. Finalmente, no Capítulo VI são apresentadas as conclusões e propostas para trabalhos futuros.

> COME CALLER CELERICA (L. L.C.AR, SP E.F. E. N.

<u>CAPITULO II</u>

II. DESENVOLVIMENTO TEORICO

II.1 - DETERMINAÇÃO DA EXPRESSÃO DE CÁLCULO DA FRAÇÃO DE VA ZIO LINEAR

II.l.l - Fração de Vazio Linear

Nos escoamentos bifásicos sempre ocorre variação temporal nos parâmetros envolvidos. Consequentemente, numa dada secção transversal de um canal, por onde flui uma mistura bifásica, a fr<u>a</u> ção de vazio linear, $Rg_1(t)$ pode ser descrita pela seguinte expressão /18/:

$$Rg_1(t) = \overline{R}g_1 - \sigma Rg_1(t)$$
(2.1)

onde, $\overline{R}g_1$ é a fração de vazio média num intervalo de tempo T , $\sigma Rg_1(t)$ é um termo residual, função do tempo, com média zero.A fração de vazio média real é dada por /18/:

$$\overline{R}g_1 = \frac{1}{T} \int_T Rg_1^* (t) dt$$
 (2.2)

onde, $Rg_1(t)$ é dado por / 9,18/:

.

5

$$Rg_{1}(t) = \frac{\frac{1}{2} X_{dg_{1}}(t)}{X_{d}}$$
 (2.3)

onde X_{dg_i} é o diâmetro característico da fase "g" presente no instante t, conforme Figura 2.1.

FIGURA 2.1 - Modelo de distribuição bifásica dinâmico.

Devido à dificuldade de medir X_{dg_1} nos escoamentos bifá sicos reais foram desenvolvidos modelos estáticos onde são definidos modelos de distribuição em série e em paralelo.

> II.1.2 - Fração de Vazio Linear Utilizando o Modelo de Distribuição Bifásica em Série

A técnica de atenuação de raios gama baseia-se no princípio de que a intensidade de um feixe de raios gama colimado diminue exponencialmente ao atravessar uma substância qualquer.Mat<u>e</u> maticamente, a intensidade do feixe de raios gama é dada por /9, 21, 41/:

$$N = N_{i} e^{-\frac{\mu}{\rho}} \rho x \qquad (2.4)$$

onde:

- N = intensidade do feixe emergente
- N_i = intensidade do feixe incidente
- $\frac{\mu}{\rho}$ = coeficiente de absorção de massa do material para a ener ria do feixe incidente

- ρ = densidade do material
- x = espessura do material atravessado pelo feixe de raios ga ma

Quando um feixe de raios gama colimado atravessa um tu bo onde flui uma mistura bifásica ar-água ou vapor-líquido, ao longo de uma corda, a radiação é absorvida pelo material da pare de do tubo,pelo gás e pela água. Utilizando o modelo de distri buição bifásica em série da Figura 2.2, a intensidade emergente é dada por / 9,21,36/:

$$N = N_{i} \exp(-\mu_{p} X_{p}) \exp\left[-\mu_{l} (1 - \overline{R}g_{1}) X_{d}\right] \exp\left(-\mu_{g} \overline{R}g_{1} X_{d}\right) \quad (2.5)$$

onde:

- X_{p} = espessura total da parede
- X_d = comprimento da corda interna na qual incide o feixe de raios gama

 $\mu_{p}, \mu_{g}, \mu_{t}$ = coeficientes de absorção linear do material da parede do tubo, do gás e do líquido

 $\overline{R}g_1$ = fração de vazio média linear

A fração de vazio linear, $\overline{R}g_1$, é a relação entre o vol<u>u</u> me de gás em uma corda e o volume total de gás e água na mesma corda.

Para os escoamentos monofásicos a relação (2.5) se r<u>e</u> duz a:

$$N = N_{i} \exp(-\mu_{p} X_{p}) \exp(-\mu_{\ell} X_{d})$$
, (2.6)

para água ($\overline{R}g_1 = 0$) e

$$N = N_{i} \exp(-\mu_{p} X_{p}) \exp(-\mu_{q} X_{d}), \text{ para gás } (\overline{R}g_{1}=1)$$
(2.7)

Substituindo (2.6) e (2.7) em (2.5) facilmente se obtém:

$$\overline{R}g_1 = \frac{\log(N/N_o)}{\log(N_1/N_o)}$$
(2.8)

- onde, N = intensidade emergente quando o tubo contém uma mistu ra gás-água ou vapor-líquido
 - N_1 = intensidade emergente quando o tubo contém apenas a fase gasosa ($\overline{R}g_1$ = 1)
 - N_0 = intensidade emergente quando o tubo contém apenas a fase líquida ($\overline{R}g_1 = 0$)

II.1.3 - <u>Fração de Vazio Linear Utilizando o Mo-</u> <u>delo de Distribuição Bifásica em Parale</u> <u>lo</u>

-19-

Utilizando o modelo de distribuição bifásica em paralelo da Figura 2.3, a intensidade de raios gama emergente é dada por / 9,33, 36/:

$$N = N_{i} \exp(-\mu_{p} X_{p}) \left[\overline{R} g_{1} \exp(-\mu_{g} X_{d}) + (1 - \overline{R} g_{1}) \exp(-\mu_{l} X_{d}) \right] \qquad (2.9)$$

Para um escoamento gás-água ou vapor-líquido, da expres são (2.9) obtém-se a seguinte relação para $\overline{R}g_1 / 9,33,36/$:

$$\overline{R}g_{1} = \frac{N - N_{O}}{N_{1} - N_{O}}$$
(2.10)

Se o contraste é pequeno, ou seja $N_1/N_0 \le 1,15/33/$, en tão pode-se aproximar a relação (2.8) para:

$$\frac{\log(N/N_{o})}{\log(N_{1}/N_{o})} = \frac{N - N_{o}}{N_{1} - N_{o}}$$
(2.11)
$$\log(N_{1}/N_{o}) = N_{1} - N_{o}$$

FIGURA 2.3 - Modelo de distribuição bifásica em paralelo

A aproximação acima permite determinar a fração de vazio quando as duas fases se encontram distribuídas de forma não ideal, correspondendo aos diferentes regimes de escoamento bifá sico.

Normalmente, a fração de vazio média linear $(\overline{R}g_1)$ é cal culada com a expressão (2.8), assumindo que a distribuição do fl<u>u</u> xo em série seja a que ocorre com mais frequência, quando o feixe de raios gama é de pequeno diâmetro comparado com o diâmetro da secção de testes.

11.2 - MÉTODOS DE CÁLCULO DE FRAÇÃO DE VAZIO BIDIMENSIONAL

II.2.1 - Fração de Vazio Bidimensional Calculada por Integração da Fração de Vazio Linear

A Figura 2.4 representa a secção transversal de uma secção de testes de raio interno R, por onde escoa uma mistura bifásica, sendo varrida por um feixe de raios gama cujo diâmetro é dy.

FIGURA 2.4 - Corte transversal da secção de testes

Da figura 2.4, tem-se:

$$x^2 + y^2 t = R^2$$
 (2.12)

ou x = $\frac{1}{2} \sqrt{R^2 - y^2}$ (2.13)

onde y representa a distância do plano y=0 ao feixe de raios gama.

Devido à simetria, dA é dada por:

$$dA = 2 \times dy \tag{2.14}$$

Introduzindo (2.13) em (2.14), tem-se:

$$dA = 2\sqrt{R^2 - y^2} \, dy$$
 (2.15)

A fração de vazio média bidimensional, $\overline{R}g_2$, é dada por /9/:

-22-

$$\overline{R}g_{2} = \frac{1}{A} \int_{A} \overline{R}g_{1} dA \qquad (2.16)$$

onde, $\overline{R}g_1$ é a fração de vazio média linear, determinada pela rel<u>a</u> ção (2.8) e A é a área da secção transversal interna da secção de testes, dada por:

$$A = \pi R^2$$
 (2.17)

Substituindo (2.8), (2.15) e (2.17) em (2.16) e rearranjando os termos, tem-se:

$$\overline{R}g_{2} = \frac{2}{\pi R^{2}} \int_{-R}^{R} \frac{\log N(y) / N_{O}(y)}{\log N_{1}(y) / N_{O}(y)} \sqrt{R^{2} - y^{2}} dy \qquad (2.18)$$

onde, $N_{i}(y)$ é a intensidade do feixe emergente na posição y.

Uma vez que o integrando na expressão (2.18) só está definido para um número finito de pontos-base, y_i ; i= 1, 2, 3,... m, no intervalo de integração {-R, R} a solução deve ser buscada por meio de algum processo de quadratura numérica. Os métodos conheci dos para a avaliação de uma integral costumam ser classificados em duas grandes categorias, conforme sejam ou não espaçados igualmen te os pontos-base.

Os processos aplicáveis quando tais pontos se acham igualmente espaçados conduzem à quadratura de Newton-Cotes, os demais, aplicaveis quando os pontos não se acham igualmente espaçados, conduzem às quadraturas Gaussianas, que se valem de polinô mios de Legendre ou de outros polinômios ortogonais /44/.

Uma vez que os pontos y_i aqui tratados, são igualmente espaçados, optou-se pela quadratura de Newton-Cotes, mais precisamente, pela utilização da regra 1/3 de Simpson,uma vez que o número de pontos-base é ímpar. Dessa forma, pela regra de Simpson, tem-se que:

$$\overline{R}g_{2} = \int_{a}^{b} f(y) dy = \frac{h}{3} \left[f(y_{1}) + 4f(y_{2}) + 2f(y_{3}) \dots + 4f(y_{m-1}) + f(y_{m}) \right] + E_{T}$$
(2.19)

onde, $h = y_{i+1} - y_i$,

$$f(y) = \frac{2}{\pi R^2} \sqrt{R^2 - Y^2} \frac{\log N(y) / N_0(y)}{\log N_1(y) / N_0(y)} e$$
(2.20)

$$E_{T} = -\frac{h^{5}}{90} f^{(*)}(y)$$
 (2.21)

Um outro método de cálculo da fração de vazio média bidimensional, $\overline{R}g_2$, é o da integral das contagens, "transformando" as medidas realizadas ponto a ponto como se fosse uma única medida que abrangesse toda a secção transversal da secção de testes de uma só vez (Método "One-Shot"). Da Figura 2.5 tem-se que a área "vista" pelo detector é a área de um círculo de raio r.=1 mm. Transformando as contagens obtidas por área de círculo em conta gens por área de um quadrado de 2,0 x 2,0 mm de aresta, como mostra a Figura 2.5, tem-se que:

$$C_{i_{t}} = \frac{C_{i}}{A_{c}} \cdot A_{q}$$
 (2.22)

onde:

C_{it} = contagem ponto a ponto transformada C_i = contagem ponto a ponto obtida A_c = área do círculo A_g = área do quadrado

-24-

sendo
$$C_i = \int_T N_i dt$$

onde T = intervalo de tempo durante o qual é feita a contagem.

Determinadas as contagens transformadas ponto a ponto, efetua-se a somatória, obtendo-se, assim, uma contagem equivalen te a se ter um sistema de colimação "One Shot" /14/ e /12/.

Desta forma, a fração de vazio bidimensional média Rg, é dada por:

$$\overline{R}g_{2} = \frac{\log \sum_{1}^{m} C_{xt} / \sum_{1}^{m} C_{ot}}{\max \qquad m}$$

$$\log \sum_{1}^{m} C_{1t} / \sum_{1}^{n} C_{ot}$$
(2.24)

onde:

m = número de pontos base m $\sum_{1}^{m} C_{x_{t}} =$ somatória das contagens transformadas para a mistura gáságua m $\sum_{1}^{m} C_{o_{t}} =$ somatória das contagens transformadas para a secção de testes contendo apenas água m $\sum_{1}^{m} C_{i_{t}} =$ somatória das contagens transformadas para a secção de testes contendo apenas gás

Na expressão (2.24) observa-se que o fator A_q/A_c se encontra tanto no divisor como no dividendo dos logaritmos. Portanto, pode ser simplificada para:

$$\overline{R}g_{2} = \frac{\log \sum_{1}^{m} C_{x} / \sum_{1}^{m} C_{0}}{\max \max_{1 \in Q_{1} } m \sum_{1}^{m} C_{0}}$$
(2.25)

2. 14.

C.: kata

onde:

-25-(2.23) $\sum_{i=1}^{m} \sum_{x=1}^{\infty} z_{x} = \text{somatória das contagens obtidas para a secção de tes tes contendo a mistura gás-água.}$

 $\sum_{i=0}^{m} \sum_{j=0}^{n} \sum_{i=0}^{n} \sum_{$

m $\Sigma C = \text{somatória das contagens obtidas para a secção de tes}$ tes contendo apenas gás.

۲

<u>CAPITULO III</u>

III. ARRANJO EXPERIMENTAL

III.1 - CIRCUITO EXPERIMENTAL

III.l.l - Circuito de Água

Na Figura 3.1 é mostrado um esquema do circuito de água montado para a realização do programa experimental. Este circuito opera à pressão e temperatura ambientes, formando um circuito fechado, constituindo-se dos seguintes componentes:

- Reservatório de água de 100 l (01)
- Bomba centrífuga, trifásica, 3,4 CV (01)
- Rotâmetro (01)
- Seção de Teste (01)
- Manômetro (01)

t

- Válvulas (02 globo e 01 agulha)

No Apêndice C é apresentada a curva de calibração do ro tâmetro.

III.1.2 - Circuito de Gás

O circuito de gás, mostrado na Figura 3.1, é constituído dos seguintes componentes:

- Cilindro de gás N_2 (01)
- Válvulas (02 agulha e 01 globo)
- Manômetros (02)
- Rotâmetro (01)
- Bocal de injeção do gás (01)

A curva de calibração do rotâmetro de gás é apresentada no Apêndice C.

FIGURA 3.1 - Esquema do Circuito Gás-Água

۲

ł

A Seção de Teste consiste de um tubo de vidro vertical,

por onde circulam água e gás, simulando a ebulição. O tubo de vi dro tem 16 mm de diâmetro interno e 20 mm de diâmetro externo e uma altura de 800 mm.

O bocal de injeção de gás é conectado à base da seção de testes, no centro do tubo.

Com o objetivo de obter uma melhor distribuição das bolhas e evitar que tivessem caminhos preferenciais ao percorrer a seção de testes de baixo para cima, foram testados bocais de 0,5; 1,0; 1,5 e 2,0 mm. Nos testes realizados, os difusores de 1,0; 1,5 e 2,0 mm mostraram uma certa pulsação. O bocal de 0,5 mm não apresentou pulsações, entretanto, na sua concepção inicial, mostrou problemas com as bolhas subindo por caminhos prefe renciais. Para solucionar este problema, foi feito um bocal dif<u>u</u> sor com 4 canais, conforme a Figura 3.2.

FIGURA 3.2 - Bocal difusor para injeção de gás.

-29-

111.2 - SISTEMA DE MEDIDAS DE RADIAÇÃO

Os equipamentos para medida de fração de vazio consistem, basicamente, de uma fonte de raios gama, colocada de um lado da secção de testes, e, do lado oposto, um detector de radiação, acoplado a uma fotomultiplicadora e eletrônica associada, conforme Figura 3.3.

FIGURA 3.3 - Esquema do sistema de medida de radiação.

Na escolha do detector, o parâmetro de maior importância é a eficiência. Entre os muitos detectores existentes para espectrometria gama, os mais eficientes são os cintiladores e, en tre estes, o NaI(Tl) é o mais comumente usado, devido à sua alta eficiência de detecção. Entretanto, o seu tempo de decaimento r<u>e</u> lativamente longo limita sua aplicação para experiências cuja t<u>a</u> xa de contagem não exceda a 10^5 contagens por segundo /40/. Os equipamentos utilizados para as medidas de radiação foram os seguintes:

- . Detector NaI(T1) 3" x 3"; fotomultiplicadora: BICRON
- . fonte de alta tensão de 3 KV: FLUKE, Modelo 415 B
- . Pré-amplificador: TECHNICAL MEASUREMENT, Modelo DS-13
- . Amplificador: CRTEC, Modelo 435 A
- . Analisador Monocanal: ORTEC, Modelo 420
- . Analisador Multicanal: CAMBERRA, Modelo 455
- . Contador: ORTEC, Modelo 772
- . Temporizador: ORTEC, Modelo 773
- . Impressora: ORTEC, Modelo 777

A mesa que suporta o conjunto Fonte-Detector tem um me canismo que permite a sua movimentação nas direções horizoncal e vertical. Desta maneira é possível fazerem-se medidas ao longo de todas as cordas e em diversas alturas do tubo da Seção _ de Testes.

Devido à necessidade de um feixe de raios gama bem definido, o sistema fonte-detector foi alinhado usando um gerador de raios laser (Laser-Helio-Neon de 0,92 W). O diâmetro do feixe foi definido pelos colimadores da fonte e do detector, ambos com 2 mm de diâmetro.

Na realização das medidas foram utilizados colimadores de 4 mm na fonte e 2 mm no detetor, com o objetivo de melhorar a estatística das contagens.

CAPITULO IV

IV. FONTE DE RAIOS GAMA E TESTE DO SISTEMA DE MEDIDA

IV.1 - FONTE DE RAIOS GAMA E COEFICIENTE DE ABSORÇÃO DE MAS

É importante a escolha da fonte de raios gama apropria da para uso na situação em questão. A escolha da fonte está dir<u>e</u> tamente ligada à secção de testes. A transmissão através da par<u>e</u> de do tubo e a sensibilidade do conteúdo de água são de grande interesse. Outros dados importantes são: meia vida da fonte de raios gama, taxa de emissão, custo e disponibilidade. Como regra geral, deve-se escolher uma fonte com energia o mais baixo poss<u>í</u> vel, dessa forma, tem-se um dispositivo leve e compacto.

Na Tabela 4.1 são dadas algumas fontes de raios gama disponíveis comercialmente. Muitas fontes emitem fótons em diferentes energias. Na Tabela 4.1 também é mostrada a taxa de emissão gama. A taxa de emissão é definida como o número de gamas, de uma energia particular, emitido para cada 100 desintegrações do radionuclídeo. Quanto menor a taxa de emissão para o gama deseja do, maior a taxa de desintegração (atividade) exigida para a fon te. Isto acarreta aumento nos custos e maior exigência de blinda gem. Por isso, é desejado que a fonte tenha uma alta taxa de e missão e baixa atividade.

É sabido, que o coeficiente de absorção de massa, μ/ρ , é função da energia de feixe incidente e geralmente diminue com o aumento da energia dos fótons, sendo independente do estado f<u>í</u> sico da substância (sólido, líquido ou gasoso).

Para um densitômetro de absorção gama, o fator de interesse é a quantidade transmitida de radiação, que se relaciona diretamente com a quantidade absorvida pelo meio, por todos os processos de interação da radiação gama com a matéria. O coefic<u>i</u> ente de absorção de massa, em geral, tem contribuições de absorção por efeito fotoelétrico, compton e produção de pares. Esses efeitos são representados pela seguintes relação /50/ :

ISÓTOPO	MEIA VIDA	ENERGIA PRINCIPAL DO FÓTON (KeV)	TAXA DE EMISSÃO (e) (%)
241	422		
Amer 1 C10-241	455 anos	11,9 - 22,5	~ 40
Dámia 122	10.9 2000	20,26	35,3
Bar10-133	10,0 anos	30 - 36	~ 125
		00 - 01	30,2
		270,0	7,1
		303,0	18,7
		356,0	61,5
_		384,0	8,9
Cádmio-109	453 dias	22,1-26,0	102,3
		88,0	3,6
Césio-137	30,1 anos	32,0-38,0	8,0
		662,0	85,1
Cobalto-57	270,5 dias	6,4 - 7	- 55
		14,4	9,4
		122,0	85,2
		136,5	11,1
Cobalto-60	5,27 anos	1173,0	99,86
t		1333,0	99,98
Curio-244	17,8 anos	12,1-23,0	- 8
Gadolíneo-153	241,5 dias	41,3-47,3	~ 110
		69,7	2,6
		97,4	30
		103,2	20
Iodo-129	1,57x10 ⁷ anos	30 - 35	~ 69
		40,0	7.5
Chumbo-210	22.3 anos	9,42 - 16,4	- 21
		46,5	- 4
Manganês-54	312.5 dias	835.0	100
Plutônio-238	87.75 anos	11.6 - 21.7	- 13
Telúrio-123m	119.7 dias	27.4 - 31.1	- 50
1020220-2255		159	83.5
Túlio-170	128 dias	50.0 - 59.7	- 5
		84,3	3,4

TABELA 4.1 - Algumas Fontes de Raios Gama Disponíveis Comercialmen te / ⁵/. $\mu/\rho = \tau + \kappa + \P$

۲

onde τ representa o coeficiente de absorção de massa por efeito fotoelétrico, κ é o coeficiente de absorção de massa por efeito Compton e \P é o coeficiente de absorção de massa por produção de pares e⁺, e⁻. Outros tipos de interação da radiação gama com a matéria, tal como espalhamento Tomson e espalhamento Rayleigh, não são considerados, uma vez que contribuem muito pouco no total.

Nas Figuras 4.1 e 4.2 é mostrado o coeficiente de <u>ab</u> sorção de massa para a água em funçãoda energia. Na Figura 4.1 são mostradas as contribuições dos mecanismos de produção de <u>pa</u> res, efeito fotoelétrico e outros. Observa-se que na faixa de energia de 100 a 1000 KeV os coeficientes de absorção de massa para efeito fotoelétrico e produçao de pares contribuem muito pouco para o coeficiente total de absorção de massa. Portanto,o coeficiente total de atenuação, que é a soma dos coeficientes de absorção e espalhamento totais, é quase que exclusivamente dev<u>i</u> do ao processo Compton.

-34-

FIGURA 4.1 - Coeficientes de Atenuação de Massa para Raios Gama em Água /50/.

FIGURA 4.2 - Coeficiente de Atenuação Total para Raios Gama em Água / 9/.

IV.2 - Dependência da Fração de Vazio Linear com a Energia da Fonte e da Largura do Canal de Escoamento

Considerando um escoamento onde as fases da mistura bifásica se encontram distribuídas em paralelo, como mostra a Figura 2.3. A taxa de contagem da radiação, N, que atravessa a mistura, pode ser obtida pela Equação (2.9). Colocando este valor na equação deduzida para distribuição das fases em série, equação (2.8), obtém-se assim um valor de \overline{Rg}_{1s} diferente do valor \overline{Rg}_{1p} que seria obtido pelo modelo em paralelo, equação (2.10). A diferença entre os dois valores da fração de vazio linear é, então:

$$\Delta Rg_1 = \frac{\overline{R}g_1 - \overline{R}g_1 p}{\overline{R}g_1 p}$$
(4.2)

Com objetivo de observar a influência da energia da fonte gama na variação da fração de vazio, ΔRg_1 , foi elaborada a Figura 4.3 onde é plotada a diferença $\Delta \overline{R}g_1$ em função da fração de vazio, $\overline{R}g_{1p}$, para duas energias da fonte gama: 60 KeV ($\frac{\mu}{\rho}$ = 0,196 cm²/g) e 600 KeV (0,0896 cm²/g).

COMPLETE STREET OLENT SP

FIGURA 4.3 - Variação de ΔRg_1 versus $\overline{R}g_1$, mostrando a dependência da fração de vazio para fótons com energias de 60KeV $(\mu/\rho = 0,196 \text{ cm}^2/\text{g}) = 600 \text{ KeV}(\mu/\rho = 0,0896 \text{ cm}^2/\text{g})\text{ pressive}$ são = 1 atm e X_d = 1,6 cm.

Da mesma forma, para $\overline{Rg_1}_p = 0,5$, variando-se o diâmetro do canal, X_d, foi elaborada Figura 4.4 onde é apresentada a vari<u>a</u> ção, ΔRg_1 , em função do diâmetro do canal.

FIGURA 4.4 - Variação de ΔRg_1 versus a largura do canal X_d , pressão = 1 atm.

A Figura 4.3 mostra que o desvio máximo, $\Delta Rg_{1_{max}}$, ocorre para $\overline{R}g_{1_{p}}$ = 0,5 e para o maior valor de μ/ρ . A Figura 4.4 mos tra que para cada energia da fonte, $\Delta Rg_{1_{max}}$ aumenta com o diâme tro do canal.

Por esta análise fica demonstrado que, para maiores <u>e</u> nergias da fonte (menores μ/ρ) e pequenos diâmetros, a variação de ΔRg_1 é menor. Os pesquisadores Harms e Forrest /18/ ao compar<u>a</u> rem o modelo estático de cálculo de fração de vazio, expressão (2.8), com o modelo dinâmico, expressão (2.2), chegaram a conclusões análogas. Na aplicação da técnica de absorção de raios gama, o contraste é um parâmetro fundamental para a precisão das medidas.

Num escoamento bifásico, o contraste é dado por:

$$C_{T} = \frac{N_{1}}{N_{O}}$$
(4.3)

onde, N $_{O}$ é a intensidade emergente com o tubo cheio de água e N₁ é a intensidade do feixe emergente com o tubo vazio.

Uma vez que μ_g é desprezivel em relação a μ_l , da aplicação de (2.6) e (2.7) em (4.3) resulta:

$$C_{\rm T} = \exp(\mu_{\rm p} \cdot X_{\rm d}) \tag{4.4}$$

Da análise feita anteriormente, para que os erros devi dos à distribuição (série ou paralelo) sejam pequenos, o produto $(\mu_l X_d)$ deve ser pequeno. Portanto, a um pequeno argumento da expo nencial (4.4) corresponde um pequeno valor para o contraste. Por outro lado, como será visto no próximo item, diminuindo o contraste tem-se uma diminuição da sensibilidade de detecção de vazio.

Ottosen /33/ estabeleceu que um compromisso entre sensibilidade e precisão pode ser obtido fazendo o contraste próximo da unidade. Assim, sugeriu que :

$$1,06 < C_m < 1,15$$
 (4.5)

IV.3 - Erro EstatÍstico na Fração de Vazio Linear Devido â Sensibilidade de Detecção

É sabido que a flutuação da emissão de fóton conduz,pe la distribuição de Poison, à seguinte relação estatística / 37/:

 $\frac{O_{N_{Y}}}{N_{Y}} = \frac{1}{\sqrt{N_{Y}}}$

(4.6)

onde N_{γ} é a intensidade do feixe emergente.

Portanto, para uma boa precisão, N deve ser suficient<u>e</u> mente elevado. Como resultado, ou o tempo de contagem T ou a intensidade da fonte devem ser suficientemente altos.

Considerando a expressão (2.10) para o cálculo de $\overline{R}g_1$, em escoamento bifásico, modelo paralelo, o erro estatístico é d<u>a</u> do por /33/:

$$Rg_{1} = \frac{N - N_{0}}{N_{1} - N_{0}} + \sigma_{Rg_{1}}$$
(4.7)

onde,

$$\sigma_{Rg_{1}} = \frac{\sqrt{N}}{N_{1} - N_{O}}$$
(4.8)

Define-se sensibilidade de detecção de vazio, S, num escoamento bifásico como:

$$S = \frac{N_1 - N_0}{\overline{N}}$$
(4.9)

onde,

$$\overline{N} = \frac{N_1 + N_0}{2}$$
(4.10)

Substituindo (4.9)em (4.8), tem-se:

$$\sigma_{\mathrm{Rg}_{1}} = \frac{\sqrt{\mathrm{N}}}{\mathrm{S} \cdot \mathrm{N}}$$
(4.11)

Uma vez que o contraste C_T é próximo de 1 e $N_O < N < N_1$, pode-se escrever, aproximadamente, que:

$$N = \overline{N}$$
 (4.12)

$$\sigma_{\mathrm{Rg}_{1}} = \frac{1}{\mathrm{s}\sqrt{\mathrm{N}}}$$
(4.13)

A relação (4.13) mostra que o erro estatístico é inver samente proporcional à sensibilidade.

Relacionando (4.9), (4.10) e (4.3) obtém-se a sensibilidade em função do contraste $C_{\rm T}$:

$$S = \frac{2(C_{T} - 1)}{C_{T} + 1}$$
(4.14)

Assim, por (4.14) verifica-se que quanto maior o con traste maior a sensibilidade. No entanto, da análise do item IV. 2 foi visto que quanto maior o contraste maior o erro devido ao modelo de distribuição bifásico.

IV.4 - <u>Atividade da Fonte de Raios Gama e Tempo de Conta</u>-<u>gem</u>

A atividade, α , de uma fonte de raios gama é dada p<u>e</u> la expressão /37,50/:

$$\alpha = \frac{N}{F_{g}.f.e}$$
(4.15)

onde,

- N = intensidade da fonte
- F_G = fator geométrico
- f = eficiência do cintilador
- e = taxa de emissão da fonte
- r = raio do detector
- H = distância fonte-detetor

-41-

O fator geométrico, F_C, é dado por /37/:

$$F_{G} = \frac{1}{2} \left[1 - \frac{H}{(H^{2} + r^{2})^{1/2}} \right]$$
(4.16)

Para o arranjo experimental utilizado (Figura 2.5), temos r= 1mm e H= 500mm. A eficiência média do detetor NaI(T1) /40/ é 0,6. Considerando os parâmetros: meia vida alta, taxa de emis são alta, energia da fonte cujo contraste fique entre 1,06 e 1,15 (600 Kev < E < 3500 Kev)e boa separação em energia entre os picos, a fonte de Césio-137 foi a que se mostrou mais adequada. Da Tabela 4.1 obtém-se a taxa de emissão, e = 0,851. Para se ter uma boa estatística de contagem, assumiu-se N = 30.000 contagens no inter valo de tempo T. Substituindo estes valores em (4.15) obtem-se : $\alpha = 5,80 \times 10^{10}$ desintegrações por T. Considerando que 1 Ci equiva le a 3,7 x 10^{10} desintegrações por segundo, se for tornado T **i**gual a 1 segundo seria necessária uma fonte de 1,59 Ci. Além das dificuldades na obtenção desta fonte, haveria problemas referen tes à blindagem. A solução normalmente adotada é utilizar fon tes com menor atividade, aumentando-se o tempo de contagem.

Devido à disponibilidade no IPEN-CNEN/SP,foi usada uma fonte de Césio-137 com atividade 68 mCi, o que equivaleria a um tempo de contagem (para N= 30.000) T = 23,4 segundos. Como nos cálculos acima não foram considerados outros fatores como auto-ab sorção da fonte, absorção do ar, absorção da parede da secção de teste; etc, foi adotado um tempo de contagem de 40 segundos.

Nestas condições, para o arranjo experimental definido no Capítulo III, as contagens das intensidades emergentes com a seção de teste cheia de água e vazia são 32.231/40s e 35.463/40s, respectivamente. Estas contagens correspondem a um contraste de C_{π} = 1,1003.

No Apêndice D é apresentado o cálculo de blindagem de fonte necessária.

IV.5 - Influência do Tempo de Resolução do Detetor no Cálculo da Fração de Vazio Linear

-42-

Considerando um sistema de detecção-contagens que tem um tempo de resolução ζ e supondo que cheguem ao sistema N fótons por segundo e que C seja o número detectado; a fração de tempo que o sistema ficará sem contar fótons será C ζ e a fração de tempo em que contará será (1 - C ζ). Portanto, a fração de fótons detectadas pelo sistema de medida é dado por /34/:

$$\frac{C}{N} = 1 - C\zeta \qquad (4.17)$$

Para o detector NaI(Tl) o tempo de resolução é 2,5 μs /40/.

A fração de vazio linear, $\overline{R}g_1$, para escoamento bifásico, considerando distribuição em série, é dada pela expressão (2.8). Assumindo tempo de resolução igual a zero (N = C) tem-se:

$$\widetilde{R}g_{1} = \frac{\log \frac{C}{C_{0}}}{\log \frac{C_{1}}{C_{0}}}$$
(4.18)

Assumindo tempo de resolução diferente de zero (N dado pela expressão (4.17)) tem-se:

$$\widetilde{Rg}_{1_{c}} = \log \frac{C(1 - \zeta C_{o})}{C_{o}(1 - \zeta C)} / \log \frac{C_{1}(1 - \zeta C_{o})}{C_{o}(1 - \zeta C_{1})}$$
(4.19)

Assumindo que $C_1 = 4.000$ contagens/seg e considerando o contraste da ordem de 1,1 tem-se $C_0 = 3.636$. Variando o valor de C entre C_0 e C_1 e utilizando (4.18) e (4.19) foi elaborada a Ta-bela 4.2.

C(contagens/seg)	Rg1 (4.18)	$\overline{R}g_1$ (4.19)	
3.636	0,0000	0,0000	
3.700	0,1829	0,1828	
3.750	0,3235	0,3234	
3.800	0,4624	0,4622	
3.850	0,5994	0,5993	
3.900	0.7346	0,7346	
3.950	0,8682	0,8681	
4.000	1,0000	1,0000	

TABELA 4.2 - Influência do tempo de resolução no cálculo da fração de vazio linear.

Como pode ser observado pela Tabela 4.2, a influência do tempo de resolução é desprezível, permitindo, portanto, a utilização de expressão mais simples (4.18).

IV.6 - Verificação da Reprodutibilidade do Sistema de Medidas

Para verificar o funcionamento e a reprodutibilidade do sistema de medidas, foram realizados os testes do Teorema do Lim<u>i</u> te Central (TLC) e do "Qui" Quadrado (χ^2).

TEOREMA DO LIMITE CENTRAL (TLC) /29/

Sendo C_i o valor da j-ésima contagem em um número n de medidas realizadas, pelo TLC tem-se:

$$P[\overline{C} - \sigma_c \leqslant C_i \leqslant \overline{C} + \sigma_c]^2 = 68,33 \qquad (4.20)$$

....

onde: P = probabilidade

 \overline{C} = valor médio das contagens

 σ_c = desvio padrão das contagens

Este teste foi aplicado para verificar o funcionamento do sistema na primeira calibração utilizando um conjunto de 15 med<u>i</u> das. Os resultados obtidos levaram a aceitar a hipótese. Este teste continuou a ser realizado antes de cada início de operação.

TESTE DO "QUI" QUADRADO (χ^2) /13/

Com o objetivo de confirmar os resultados da aplicação do TLC, foi feito o teste do χ^2 .

Para um certo número n de medidas realizadas de valo - res C_i, o χ^2 é obtido pela seguinte relação:

$$\chi^{2} = \frac{\sum_{i=1}^{n} (C_{i} - \overline{C})^{2}}{\sigma_{C}^{2}}$$
(4.21)

O valor de χ^2 obtido é comparado com valores tabelados. Na tabela de distribuição de χ^2 estão relacionados os valores da probabilidade, P, de se obter certos valores de χ^2 para f graus de liberdade.

Para um valor muito pequeno de P suspeita-se da exis tência de algum defeito no sistema fonte-detecção-eletrônica associado. Na prática, é considerado como bom funcionamento do si<u>s</u> tema quando a probabilidade P está entre 05 e 95%.

Para o sistema de medidas de radiação em questão, foi obtido o seguinte valor de χ^2 para n= 15:

t

Portanto, é considerada válida a hipótese do bom funcio namento e reprodutibilidade do sistema, estando este apto para a operação.

- TO DOLGA (2010) 100 SP - 21.4

<u>CAPITULO</u> V

V. MEDIDAS E ANALISE DOS DADOS

V.1 - CARACTERIZAÇÃO DOS REGIMES DE ESCOAMENTO

V.1.1 - Procedimento Experimental

Na secção de testes descrita no Capitulo III, foram simulados alguns regimes de escoamento bifásico, variando-se as va zões de gás (nitrogênio) desde 0,01 a 0,1 m³/h e a de água desde 0,13 a 0,44 m³/h. Os resultados obtidos são apresentados na F<u>i</u> gura 5.1 e no Apêndice B (Tabela B.7).

V.1.2 - Análise dos Resultados

Roumy /39/, utilizando as técnicas de medida de fração de vazio por válvulas de fechamento rápido e simultâneo e por qu<u>e</u> da de pressão para uma secção de testes vertical, com 16 mm de diâmetro interno, com escoamento bifásico, ar-água, concorrentes e ascendentes, correlacionou a fração de vazio média, \overline{Rg}_2 , com as velocidades superficiais do gás (J_g) e da água (J_g) através da expressão:

$$\overline{R}g_2 = 0,9 \frac{J_g}{20 + J_g}$$
 (5.1)

onde as velocidades superficiais são dadas em cm/s e definidas c<u>o</u> mo sendo a relação entre a vazão do componente i (Q_i) e a área t<u>o</u> tal transversal da secção de teste (A), por onde escoa a mistura bifásica.

$$J_{i} = \frac{Q_{i}}{A}$$
(5.2)

A Figura 5.1 apresenta o mapa de escoamento bifásico o<u>b</u> servado visualmente, indicando as frações de vazio calculadas pela expressão (5.1).

Para as faixas de vazões utilizadas, observou-se a predominância de dois regimes de escoamento bifásico característicos: bolhas e pistonado ("slug"). Na transição do regime a bolhas para o pistonado formaram-se os regimes a bolhas aglomeradas e o bolhas aglomeradas pulsante ("slug" de bolhas aglomeradas), confo<u>r</u> me Tabela B.7 do Apêndice B.

A transição do regime a bolhas pare o pistonado ocorre para frações de vazio da ordem de 27%. Este resultado está perfei tamente compatível com os de outros autores. Por exemplo, Mishima e Ishii /32/ estabeleceram que a transição entre os dois regimes ocorre para frações de vazio iguais a 30%, enquanto que Taitel e Dukler /45/, determinaram, teoricamente, que essa transição ocorre a 25%. Conclui-se, portanto, que os resultados obtidos estão coerentes e permitem a caracterização dos regimes de escoamento.

V.2 - MEDIDAS DE FRAÇÃO DE VAZIO

V.2.1 - Procedimento Experimental

Mantendo fixa a vazão de água em 0,15 m³/h e variando a vazão de gás de 0,01 a 0,1 m³/h, foram medidas as intensidades dos feixes emergentes em duas posições verticais, distanciadas 20 cm. O plano inferior de medidas está situado a 40 cm do bocal de injeção do gás, consequentemente, o plano superior está a 60 cm. Em cada posição vertical, e para cada par de vazões de água e nitrogênio foram medidas cordas de 2 em 2 mm.

Em cada caso e em cada corda do tubo da secção de testes,foram feitas 5 medidas de 40 segundos cada. No Apêndice B (Tabelas B.1 e B.2; B.4 e B.5) são apresentados os resultados obtidos. Convém ressaltar que cada valor de contagem apresentado no Apêndice B representa a média sobre 5 medidas.

-48-

FIGUPA 5.1 - Mapa de Escoamento Bilíásico

.ي/شا وت 8.95 040 Karstan 20.8 8 Bo 2% 0 2% 1 md 30.0 01440156 818:0 27.0 0/6.0 €/83 BB6 △22.8 0/23 0/29 0 /24 0/23 0/44 0 /6.0 0*1*€3 893882.2 €4.7 03:2012:50 163 0.4.6 0.15.5 8/7.5 8 19.4 0//3 0/20 801 80/0 "BUJS ġ 0/60 8.0/0 0//0 *a*#0 SLUG" DE BOLHAS AGLOMERADAS 0.00 0.07 0.08 0.08 0.46.7 0(3.7 ୫.ଟ ୧.ଟ ୧.ଟ ୦ **ସ**୍ୱର୍ଭ୍ ତ 0//0 0/2.7 0/4.8 06.1 BOLHAS 0 6.4 <u>0,5,0</u> 0.5.0 012.4 9.00 0.80 08.4 0 F O 09.7 4110 0/2/0 0131 06.7 ଚନ୍ତ 0111 000 000 08.5 1.60 072 07.0 ທ ທ 0.0 19775 ୦ଟ୦ 660 083 00 ↓↓ Å Å 50 054 05.0 4:90 06.8 074 20 0 SPORTAR AGLOMERADAS 0.0 S 05.6 060 0 4 0 000 031 03.60 <u>6</u>60 046 4:00 040 SANDE 0.08 0 0 5 0 030 EE O 02.5 6% O 620 670 02.1 ð J2 08 (s/w) 60 04 50 0 0 ง 0 0.2 ð

-50-

a) Perfil do Escoamento

A intensidade emergente em cada corda foi colocada em função da distância ao centro do tubo (y), conforme Figura 5.2, obtendo-se, assim, as curvas do perfil de escoamento para o tubo cheio de água, tubo vazio e fluindo uma mistura gás-água.

Como pode ser observado, a maior taxa de contagem ocorre quando o tubo está vazio, pois, praticamente só há absorção da radiação gama pela parede do tubo. A taxa de contagem na região interna do tubo é sempre menor que a taxa de contagem na região externa devido, justamente, à absorção da parede do tubo. A absorção na região interna aumenta com o aumento da espessura de água a ser atravessada pelo feixe de radiação gama.

FIGURA 5.2 - Curvas de perfil de escoamento para tubo cheio de água, tubo vazio e fluindo uma mistura gás-água (0,1 m³/h de gás e 0,15 m³/h de água).

b) Fração de Vazio Média Bidimensional

No Apêndice B(Tabelas B.3 e B.6) são apresentados os r<u>e</u> sultados da fração de vazio média bidimensional, $\overline{R}g_2$, calculados pelos dois métodos desenvolvidos no Capítulo II: <u>i</u>) por integração numérica de $\overline{R}g_1$ e <u>ii</u>) por somatória das contagens do feixe de ra diação gama transmitido através da secção de testes. Para os dois planos de medida, foram elaboradas as Figuras 5.3, 5.4, 5.5 e 5.6, comparando os resultados obtidos pelos dois métodos.

Na abcissa das figuras foi utilizado o fluxo de massa de çás, G_a, definido por:

$$G_{g} = \frac{Q_{g} \cdot \rho_{g}}{A}$$
(5.3)

onde, Q é a vazão volumétrica do gás, ρ_g a densidade do gás e A a área transversal da Secção de Teste.

Observando as Figuras 5.3 e 5.4 observa-se que independente do método de cálculo, os valores de \overline{Rg} , no plano superior são levemente maiores do que no plano inferior.

A comparação entre os resultados obtidos pelo método de integração numérica e pelo método da somatória é apresentada nas Figuras 5.5 e 5.6. Como pode ser observado, as frações de vazio obtidas com o método da somatória são levemente superiores, tanto nas medidas do plano superior como do plano inferior.

Na Tabela 5.1 e Figura 5.7 são comparados os resultados obtidos neste trabalho e aqueles determinados experimentalmente por Roumy / 39/. As diferenças máxima e mínima entre os valores de Roumy / 39/ e os deste trabalho (considerando o método da integração e no plano inferior) são da ordem de 16% e 6,7%, respectiva mente. Da Tabela 5.1 observa-se, ainda, que, com exceção de um único ponto ($\overline{R}g_2 = 7,8$ %) essas diferenças são ainda menores, comp<u>a</u> rando os resutados do método da somatória com os de Roumy / 39/.

Considerando que os resultados de Roumy / 39/ apresentam uma dispersão da ordem de 30% entre os resultados experimentais e a regressão da expressão (5.1), pode-se concluir que a técnica de absorção de raios gama é perfeitamente viável, para seções com diâmetros relativamente pequenos e frações de vazio também pequenas (< 25%).

Observa-se da Figura 5.7 que com o aumento da fração de vazio, os dados se afastam dos pontos calculados por Roumy /39/, posicionando-se todos abaixo destes para frações de vazio próxi mas a 30%. Esse mesmo comportamento é observado entre os dados de Roumy /39/ e sua regressão, expressão 5.1.

Rg _{2 R} (?) (Roumy)	Rg21(%)(Integral)	$\frac{Rg_{2R}-Rg_{2I}}{Rg_{2R}} \times 100$	Rg, (%) (Somatória)	$\frac{Rg_{2R}-Rg_{2S}}{Rg_{2R}} \times 100$
3,0	2,8	6,7	3,2	6,7
6,0	6,8	13,3	7,8	29,0
9,0	7,8	13,3	8,2	8,8
12,0	11,1	7,5	13,0	8,3
15,0	13,0	13,3	15,2	1,3
18,0	16,6	7,7	19,7	9,4
21,0	19,4	7,6	23,3	10,9
24,0	21,3	11,2	24,8	3,3
27,0	22,6	16,3	26,6	1,5
30,0	25,2	16,0	29,5	1,6
		σ= 11,3		σ= 8,2

TABELA 5.1 - Diferenças entre os valores de $\overline{R}g_2$ obtidos no plano inferior e os calculados por Roumy / 39/.

c) Análise de Erros no Cálculo da Fração de Vazio, Rg,

A análise de erro dos dois métodos de cálculo foi feita no Apêndice A. Na Figura 5.8 é feita uma comparação entre os erros estatísticos dos métodos integral e somatória. Observa -se que o método da somatória apresenta menor erro estatístico que o da integral, pelo fato de que na análise de erros do método da somatória não são computados os erros devidos às variações no di $\frac{\hat{a}}{\hat{a}}$ metro do tubo e nem à posição do feixe.

-53-

Observa-se que na região de fração de vazio muito baixa, o erro percentual é elevado e tende a uma assintota ao eixo das ordenadas quando a fração ce vazio se aproxima de zero. Resulta dos semelhantes obtiveram Hooker e Popper /21/ ao estudarem o erro estatístico da fração de vazio, utilizanco também, técnica de absorção gama, conforme pode ser observado na Figura 5.8.

Como foi visto, os dois métodos de cálculo de \overline{Rg} , util<u>i</u> zados na análise dos resultados (integral e somatória) se mostraram concordantes entre si e com os resultados de outros autores . Entretanto, não é possível uma conclusão definitiva sobre qual dos dois métodos é mais conveniente. A vantagem do método da somató ria é a rapidez com que é feita a análise dos resultados, principalmente quando o número de pontos é grande (Secção de Testes de grandes diâmetros). A principal desvantagem deste método, é que ele não pondera, para cálculo de \overline{Rg}_2 , a relação comprimento da corda/diâmetro.

۲

FIGURA 5.3 - Fração de vazio média bidimensional, calculada pela integração de $\overline{R}g_1$ nos planos inferior e superior $(Q_l = 0,15 \text{ m}^3/\text{h}).$

FIGURA 5.4 - Fração de vazio média bidimensional, calculada pela somatória das contagens nos planos inferior e supericr ($Q_{g} = 0,15 \text{ m}^{3}/\text{h}$).

FIGURA 5.5 - Fração de vazio média bidimensional no plano inferior ($Q_{g} = 0,15 \text{ m}^{3}/\text{h}$).

[00]....

.

FIGURA 5.6 - Fração de vazio média bicimensional no plano superior $(Q_{g} = 0, 15 \text{ m}^{3}/\text{h}).$

FIGURA 5.7 - Comparação entre a fração de vazio média bidimensio nal calculada por integração numérica, por somató ria e a calculada por Roumy /39/, no plano inferior.

FIGURA 5.8 - Comparação dos erros estatísticos totais na fração de vazio, calculados por integração e somatória , com os de Hooker e Popper /21/.

CAPITULO VI

VI. CONCLUSOES E SUGESTOES

VI.1 - CONCLUSÕES

Pelo presente trabalho conclue-se que:

- O sistema utilizado para medida de fração de vazio por atenuação de um feixe de raios gama, variando ponto a ponto ao longo da seção do tubo, mostrou-se adequado.
- Os resultados obtidos se mostraram concordantes com os de outros autores.
- Como era esperado, para frações de vazio baixas observaram -se erros estatísticos elevados. Portanto, a técnica desenvolvida é mais adequada para medida de frações de vazio acima de 10% onde a confiabilidade dos resultados é maior.
- Os resultados obtidos pelos dois métodos de cálculo de fração de vazio, por somatória das contagens e por integração numéri ca de Rg1, apresentaram boa concordância entre si. O método de cálculo por somatória das contagens apresenta e vantagem de ser mais simples e prático, embora seja insensível às flutua ções estatísticas das contagens em relação à posição do feixe de raios gama.
- A transição do regime a bolhas para o regime pistonado ("slug") ocorre para frações de vazio em torno de 27%, concordando com os dados da literatura.

VI.2 - SUGESTÕES

Desenvolver um sistema "one-shot" para essa mesma sec

ção de testes com objetivo de comparar a técnica estudada com a de um único feixe abrangendo toda a secção de testes. Para tal, as vazões de água e gás devem variar de maneira que a fração de vazio varie de 0 a 100%.

Para esse sistema será necessário construir um monobl<u>o</u> co, em chumbo, para a blindagem do conjunto fonte-detector, de maneira que este fique perfeitamente alinhado e que a secção de testes fique em posição tal que apenas o diâmetro interno do tubo seja varrido em cada tomada de medida. Ainda, para esse sistema, devem ser utilizadas duas fontes de radiação gama: uma de Césio-137, e uma outra com energia de emissão dos fótons menor e cuja meia-vida seja suficientemente longa para garantir que não haja decaimento significativo durante o tempo de operação. Por exemplo: Bário-133 e Amerício-241.

O objetivo de se utilizar duas fontes de raios gama com energias diferentes é para verificar a influência do contraste na precisão da fração de vazio, $\overline{R}g_2$.

t

REFERENCIAS BIBLIOGRAFICAS

- ABUAT, N.; JONES, O.C.; ZIMMER, G.A.; LEONHARDT, W.J., SAHA,
 P. BNL Flashing experiments: Test facility and measurement techniques. IN: COMMISSARIAT Å L'ENERGIE ATOMIQUE. Transient two-phase flow: proceedings of the 2nd CSNI specialists meeting held in Paris, 12-14 june, 1978, v.2. France, 1980. p. 715-743.
- BABCOK & WILCOX. <u>Void fraction by gamma scattering: a</u> <u>background and facility description report</u>. Eletric Power Research Institute, August, 1977. (EPRI PROJECT n9 RP-765).
- 3) BALZHISER, R.E.; SAMUELS, M.R.; GAHMAN, R.L. Recent void fraction studies in two-phase potassium flows. <u>Nuclear</u> <u>Engineering - Part XVI</u>, <u>68</u> (62): 104-112, 1970.
- 4) BANERJEE, S.; CHAN, A.M.C.; RAMANATHAN, N.; YUEN, P.S.L. Fast neutron scattering and attenuation technique for measurement of fraction and phase distribution in transient flow boiling. IN: UNITED NATIONS. <u>Heat transfer: proceedings of the 6th international conference held in Toronto, 7-11, August, 1978, v.l. Washington, D.C., 1978.</u>
- 5) BANERJEE, S. & CHAN, A.M.C. Design aspects of gamma densito meters for void fraction measurements in small scale twophase flow. <u>Nuclear Instruments and Methods</u>, <u>190</u>: 135-148, 1981.
- 6) BAYOUMI, M. AND CHARLOT, R. Local voidage measurements in twophase flow systems using on optical probe. <u>Atomkernenerg</u> <u>Kerntech</u>, <u>37</u>(2): 110-112, 1981.
- 7) BRAZ, F.A. F9. <u>Solução numérica do fenômeno de remolhamento de</u> <u>um elemento de combustível</u>. São Paulo, Instituto de Pesquisas Energéticas e Nucleares, 1984 (Dissertação de Mestrado, Inst<u>i</u> tuto de Pesquisas Energéticas e Nucleares da Universidade de São Paulo).

- 8) COOK, W.H. <u>Boiling density in vertical retangular multicanal</u> <u>sections with natural circulation</u>. Argonne National Laboratory, USA, 1956 (ANL-5621).
- 9) DELHAYE, J.M.; GIOT, M. and RIETHMULLER, M.L. <u>Thermohydraulics</u> of two-phase systems for industrial design and nuclear engineering, Hemisphere - MacGraw Hill, 1981.
- DEMING, W.E. <u>Statistical adjustment of data</u>. New York. Jhon Wiley & Sons, inc., 1943.
- 11) EGEN, R.A.; DINGEE, D.A.; CHOSTAIN, J.W. <u>Vapor formation and</u> <u>behavior in boiling heat transfer</u>. Ohio, Battele Memorial Institute, February, 1957 (BMI-1163).
- 12) FERREL, J.K.; MCGEE, J.W. An accurate one-shot gamma attenua tion technique for measuring void fraction. <u>Nuclear</u> <u>engineering - Part XVI</u>, <u>68</u>(62), 113-120, 1970.
- 13) FISHER, R.A. <u>Métodos estatísticos para investigadores</u>. Aguilar, Madrid, 1949.
- 14) GARDNER, R.P.; BEAN, R.H.; FERREL, J.K. On the gamma-ray oneshot collimator measurement of two-phase-flow void fractions. <u>Nuclear Applications & Tecnology</u>, 8: 88-94, 1970.
- 15) GHIAASIAAN, S.M.; CATTON, I.; DUFFEY, R.B. Thermal hydraulic and two-phase phenomena in reflooding of nuclear reactor cores. J. of Fluids Engineering, <u>106</u>: 477-485, 1984.
- 16) HANSEN, K. F. & CLARK, M. JR. <u>Numerical methods of reactor</u> analysis. New York, Academic Press, 1964.
- 17) HARDY, J.E. & HYLTON, J.O. Eletrical impedance string probes for two-phase void and velocity measurements. <u>Int. J.</u> <u>Multiphase Flow</u>, <u>10</u>(5): 541-556, 1984.
- 18) HARMS, A.A. & FORREST, C.F. Dynamic effects in radiation diagnosis of fluctuating voids. <u>Nuclear Science and Engi-</u> <u>neering</u>, 46: 408-413, 1971.

- 19) HEIDRICK, T.R.; SALTVOLD, J.R.; BANERJEE, S. Application of a 3 beam 7 densitometer to two-phase flow regime and density measurements. <u>Atche Symposium Series</u>, <u>73</u>(164): 248-255, 1978.
- 20) HETSRONI, G. <u>Handbook of multiphase systems</u>. Hemisphere Publishing Corporation, USA, 1982.
- 21) HOOKER, H.H. & POPPER, G.F. <u>A gamma-ray attenuation method</u> for void fraction determinations in experimental boiling <u>heat transfer test facilities</u>, Argonne National Laboratory, Nov. 1958 (ANL-5766).
- 22) JEANDEY, C. Multibeam X-ray densitometer for flow pattern and void fraction determination in steam water mixtures. Submitted for publication symposium on measurements in polyphase flows, ASME spring meeting in St. Louis, 7-11 June, 1982.
- 23) JONES, JR O.C. <u>Statistical considerations in heterogeneous</u> <u>two-phase flowing systems</u>. Troy, N.Y., Rensselaer Polytechnic Institute, 1973 (Tese de Doutoramento, Rensselaer Polytechnic Institute).
- 24) KENNETT, T.J.; PRESTWICH, W.V.; ROBERTSON, A. Dynamic density measurement by high energy photon scattering. <u>Int.</u> <u>Journal Appl. Rad. Isotops</u>, <u>27</u>: 529, 1976.
- 25) LAHEY, R.T. JR. & SHIRALKAR, B.S. Diabatic local void fraction measurements in freon-114 with a hot-wire anemometer. <u>Trans.Am. Nuclear. Soc.</u>, <u>15</u>(2): 880, 1972.
- 26) LEVERT, F.E. & HELMINSKI,E. A dual-energy method for measuring void fractions in flowing mediuns. <u>Nuclear</u> <u>Technology</u>, <u>19</u>(1): 58-60, 1973.
- 27) LONGO, R.L. <u>Hidrodinamique des ecoulements eau-vapeur dans</u> <u>la zone remouillee d'un tube chauffant en renoyage</u>. Grenoble, L'Institut National Polytechnique, 1981 (Tese de Doutor<u>a</u> mento, L'Institut National Polytechnique de Grenoble).

-64-

- 28) MALAVIYA, B.K. & LAHEY, R.I. JR. Analysis of the error in instantaneous void fraction measurements by dual-beam X-ray technique. Thermal-Hydraulics Instrumentation.<u>Trans.</u> <u>Am. Nuclear Soc.</u> 34: 876-877, 1980.
- 29) MARTINS, B.R. <u>Statistics for fisicists</u>. London, Academic Press, 1971.
- 30) MELLO, R.E.F.; BEHAR, M.R.; MARTINES, E.W. <u>Estudo da fração</u> <u>de vazio média em um escoamento bifásico ar-água em um</u> <u>tubo vertical</u>. São Paulo, Instituto de Energia Atômica, Jan. 1975 (IEA-Publ. 378).
- 31) MESQUITA, A.L.S.; GUIMARĂES, F.A.; NEFUSSI, N. <u>Engenharia</u> <u>de ventilação</u> industrial. Edgard Blücher, São Paulo, 1977.
- 32) MISHIMA, K. & ISHII, M. Flow regime transitions criteria for upward two-phase flow in vertical tubes. <u>Int. J. Heat Mass</u> <u>Transfer</u>, <u>27</u>(5): 723-37, 1984.
- 33) OTTOSEN, P. An experimental and theoretical investigation of inverse annular film flow and dispersed droplet flow, important under LOCA conditions. Denmark, Riso National Laboratory, July 1980 (RISO-R-424).
- 34) OUSEPH, P.J. Introduction to nuclear radiation detections. N.^t York, N.Y., Plenum, 1974 (Lab. Instr. and Techniques, 2).
- 35) PERKINS, H.C. JR.; YUSSUF, M.; LEPPERT, G. A void measurement technique for local boiling. <u>Nuclear Science and Engineering</u>, <u>11</u>: 304-311, 1961.
- 36) PETRICK, M. & SWANSON, B.S. Radiation attenuation method of measuring density of a two-phase fluid. <u>The Review of</u> <u>Scientific Instruments</u>, <u>29</u>(2): 1079, 1958.
- 37) PRICE, W.J. <u>Nuclear radiation detection</u>. New York, MacGraw Hill Book Company, inc., 1958.

- 38) ROUHANI, S.Z. & SOHAL, M.S. Two-phase flow patterns. A review of research results. Progress in Nuclear Energy, 11(3): 219-259, 1983.
- 39) ROUMY, R. Structure des ecoulements diphasiques eau-air, etude de la fraction de vide moyenne et des configurations d'ecoulements. Grenoble, France, Centre d'Etudes Nucleáires de Grenoble, 1969 (CEA-R-3892).
- 40) SANZ, A.T. Instrumentacion nuclear. Madrid, Servicio de publicaciones de la I.E.N., 1970.
- 41) SCHELL, S.L.; GAY, R.R.; LAHEY, JR. R.T. Two-phase flow phenomena in nuclear reactor technology. The development of a side scatter gamma gay system for the measurement of local void fractions. Troy, N.Y., Department of Nuclear Engineering Kensselaer Polytechnic (Institute, December, 1978 (NUREG/CR-0677 R2).
- 42) SHA, W.T. & BONILLA C.F. Out-of-pile steam-fraction determi nation by neutrons-beam atenuation. Nuclear Application, 1: 69-75, 1965.
- 43) SNELL, C.C.; DECHENE, R.L.; NEWTON, R.E. Flow regime characterization with a multielement conductance gauge. Palo Alto, Calif., Eletric Power Research Institute, April 1981 (EPRI NP-1805).
- 44) STROUD, A.H. Numerical quadrature and solution of ordinary diferential equations. New York, Springer-verlag New York inc., 1974 (Applied Mathematical Sciences, 10).
- 45) TAITEL, Y.; BARNEA, D.; DUKLER, A.E. Modeling flow pattern transition for steady upward gas-liquid. Flow in vertical tubes. Aiche J. 26: 345-354, 1980.
- 46) THIE, J.A.; BEIDELMAN, J.; HOGLUND, H. Void measurement in a boiling reactor. Nuclear Science and Engineering, 11: 1-6, 1961.
- 47) TORRES, W.M. Medida de fração de vazio em escoamento bifási co usando neutrons. Rio de Janeiro, COPPE-UFRJ, 1982 (Dissertação de Mestrado, Faculdade de Engenharia, Universidade Federal do Rio de Janeiro)..... 00.1201

- 48) TSUMAKI, K.; KANAMORI, T.; TAKAHASHI, F.; IKEDA, T. Measurement of void fraction distribution by gamma-ray computed tomography. <u>J. Nuclear Science and Technology</u>, <u>21</u>(4): 315-17, 1984.
- 49) UNTERMYER, S.; KORNBLITH, JR. L.; HOLLAND, L. K.; HEAD, M.A.; FISCHER, D.; BECKJORD, E.; WELSH, L. Operation of a high performance light water boiling reactor. IN: UNITED NATIONS. <u>Peaceful uses of atomic energy: proceedings of the 2nd in-</u> <u>ternational conference of the peaceful uses of atomic energy</u> <u>held in Geneva, 1-13 September 1958, v.9.</u> Geneva, 1958. p. 455-467.
- 50) U.S.A. DEPARTMENT OF HEALTH, EDUCATION AND WELFARE. Public Health Service. Consumer protection and environmental health service. Bureau of Radiological Health. <u>Radiological</u> <u>health handbook</u>, Rockville, Md, 1970, 458 p. (Public Health Service Publication, 2016).
- 51) WELLE, R. Void fraction, buble velocity and buble size in two-phase flow. <u>International J. Multiphase Flow</u>, <u>11</u>(3): 317-345, 1985.
- 52) YOUNIS, M.H. <u>A study of air-water two-phase flow using the</u> <u>neutron attenuation technique</u>. Ottawa, McMaster University, 1979 (Tese de Doutoramento, McMaster University) (CTOM-46983).

<u>APÊNDICE</u>A

.

1

A.1 - <u>Cálculo do Erro na Fração de Vazio Determinada por So</u> matória das Contagens

Como foi visto no item 2, a fração de vazio bidimensio nal média $\overline{R}g_2$ é determinada por :

$$\overline{R}g_{2} = \frac{\log \sum_{i=1}^{m} \overline{C}_{x_{i}} / \sum_{i=1}^{m} \overline{C}_{o_{i}}}{\log \sum_{i=1}^{m} \overline{C}_{i} / \sum_{i=1}^{m} C_{o_{i}}} , \qquad (A.1)$$

- onde : $\sum_{i=1}^{m} \overline{C}_{x_{i}}$ = somatória das contagens, durante uma varredura na secção de testes, para uma dada mistura bifásica
 - $\tilde{C}_{1} = somatória das contagens, durante uma varredura$ na secção de testes, para o tubo cheio de água
 - $\sum_{i=1}^{m} \overline{C}_{i}$ = somatória das contagens, durante uma varredura na secção de testes, para o tubo vazio
 - m = número de posições medidas na seção transver sal (pontos base)

Pela lei de propagação de erro /10/, sabe-se que a v<u>a</u> riância de uma média de C_n medidas , de uma mesma grandeza med<u>i</u> da com a mesma precisão, é dada por:

$$\sigma_{\overline{C}}^{2} = \left(\frac{1}{n}\right)^{2} \left(\sigma_{C_{1}}^{2} + \sigma_{C_{2}}^{2} + \dots \sigma_{C_{n}}^{2}\right)$$
(A.2)

onde,

.

n = número de medidas em cada posição; $\sigma_{c_k} = \sqrt{C_k}$

Definindo,
$$\overline{C} = \frac{C_1 + C_2 + \dots + C_n}{n}$$
, (A.3)

e utilizando (A.2) tem-se :

$$\sigma_{\overline{C}}^{2} = \frac{\sum_{k=1}^{n} C_{k}}{n^{2}} = \frac{\overline{C}}{n}$$
(A.4)

A variância de uma somatória é dada por :

$$\sigma^{2} \sum_{i=1}^{m} \overline{C}_{i} = \sum_{i=1}^{m} \sigma^{2}_{\overline{C}_{i}} , \qquad (A.5)$$

onde \overline{C}_i é a média das contagens numa dada posição. Combinando a equação A.4 com A.5, temos :

$$\sigma^{2} \sum_{i=1}^{m} \overline{C}_{i} = \sum_{i=1}^{m} \frac{\overline{C}_{i}}{n}$$
(A.6)

Aplicando a lei de propagação de erros à expressão (A.1), tem-se:

$$(\sigma \overline{R}_{g_2})^2 = \left(\frac{\partial Rg_2}{\partial \Sigma \overline{C}_{x_1}}\right)^2 \cdot (\sigma \Sigma \overline{C}_{x_1})^2 + \left(\frac{\partial \overline{R}g_2}{\partial \Sigma \overline{C}_{o_1}}\right)^2 \cdot \left(\frac{\sigma \Sigma \overline{C}_{o_1}}{1}\right)^2 + \left(\frac{\partial \overline{R}g_2}{\partial \Sigma \overline{C}_{i_1}}\right)^2.$$

$$\cdot (\sigma \Sigma \overline{C}_{1_{i}})^{2}$$
 (A.7)

onde:
$$\frac{\partial \overline{R}g_{i}}{\partial \Sigma \overline{C}_{x_{i}}} = \frac{1}{\Sigma \overline{C}_{x_{i}} \log \Sigma \overline{C}_{i} / \Sigma \overline{C}_{o_{i}}}$$
 (A.8)

$$\frac{\partial \overline{R}_{g_2}}{\partial \overline{z} \overline{C}_{o_1}} = \frac{\log \overline{z} \overline{C}_{x_1} / \overline{z} \overline{C}_{1_1}}{\sum \overline{C}_{o_1} \log^2 \overline{z} \overline{C}_{1_1} / \overline{z} \overline{C}_{o_1}} = \frac{\overline{R}_{g_2} - 1}{\sum \overline{C}_{o_1} \log \overline{z} C_{1_1} / \overline{z} C_{o_1}}$$
(A.9)

-71- ·

$$\frac{\partial R_{g_{i}}}{\partial \Sigma \overline{C}_{i}} = -\frac{\log \Sigma \overline{C}_{x_{i}}/\Sigma \overline{C}_{0_{i}}}{\Sigma \overline{C}_{1_{i}} \log^{2} \Sigma \overline{C}_{1_{i}}/\Sigma \overline{C}_{0_{i}}} = -\frac{\overline{R}_{g_{i}}}{\Sigma \overline{C}_{1_{i}} \log \Sigma \overline{C}_{1_{i}}/\Sigma \overline{C}_{0_{i}}}$$
(A.10)

Substituindo A.8, A.9 e A.10 em A.7, tem-se:

$$\left(\sigma\overline{R}_{g_{2}}\right)^{2} = \left(\frac{1}{\Sigma\overline{C}_{x_{1}}\log\Sigma\overline{C}_{1}/\Sigma\overline{C}_{o_{1}}}\right)^{2} \prod_{i=1}^{m} \frac{\overline{C}_{x_{i}}}{n} + \left(\frac{\overline{R}_{g_{2}}-1}{\Sigma\overline{C}_{o_{1}}\log\Sigma\overline{C}_{1}/\Sigma\overline{C}_{o_{i}}}\right)^{2} .$$

$$\cdot \prod_{i=1}^{m} \frac{\overline{C}_{o_{i}}}{n} + \left(\frac{-\overline{R}_{g_{2}}}{\Sigma\overline{C}_{1}\log\Sigma\overline{C}_{1}/\Sigma\overline{C}_{o_{i}}}\right)^{2} \prod_{i=1}^{m} \frac{\overline{C}_{1}}{n} \qquad (A.11)$$

Simplificando A.11, tem-se que :

$$(\sigma \overline{R}_{g_2})^2 = \frac{1}{n \log^2 \Sigma \overline{C}_{1/\Sigma \overline{C}_{i}}} \left[\frac{1}{\Sigma \overline{C}_{x_1}} + \frac{(\overline{R}g_2 - 1)^2}{\Sigma \overline{C}_{0_1}} + \frac{\overline{R}g_2^2}{\Sigma \overline{C}_{1}} \right]$$
(A.12)

Assim, υ erro estatístico no cálculo de $\overline{R}g$, é dado por:

$$\sigma \overline{R}_{g_{2}} = \frac{1}{\log \Sigma \overline{C}_{1} / \Sigma \overline{C}_{o_{1}}} \sqrt{\frac{1}{n} \left[\frac{1}{\Sigma \overline{C}_{x_{1}}} + \frac{(\overline{R}q_{2} - 1)^{2}}{\Sigma \overline{C}_{o_{1}}} + \frac{\overline{R}q_{2}^{2}}{\Sigma \overline{C}_{1}} \right]}$$
(A.13)

Sendo o gráfico da expressão (A.13) de forma parabólica, aimite-se que tenha um ponto de máximo ou de mínimo no intervalo zberto de $\overline{R}g_2$ variando de 0,0 a 1,0.

Com o objetivo de determinar o ponto de máximo ou de mínizo erro, a expressão A.13 foi derivada em relação a $\Sigma \overline{C}_{x_i}$, obtendo-se:

$$\frac{d\sigma\overline{R}g_{i}}{d\overline{z}\widetilde{C}_{x_{i}}} = \frac{1}{2 \log \overline{z}\widetilde{C}_{1}/\overline{z}\widetilde{C}_{0}} \sqrt{\frac{1}{n} \left[\frac{1}{\overline{z}\widetilde{C}_{x_{i}}} + \frac{(\overline{R}g_{i}-1)^{2}}{\overline{z}\widetilde{C}_{0}} + \frac{\overline{R}g_{i}^{2}}{\overline{z}\widetilde{C}_{1}}\right]}{\sqrt{\frac{1}{n} \left[\frac{1}{\overline{z}\widetilde{C}_{x_{i}}} + \frac{(\overline{R}g_{i}-1)^{2}}{\overline{z}\overline{C}_{0}} + \frac{\overline{R}g_{i}^{2}}{\overline{z}\widetilde{C}_{1}}\right]}}$$
(2.14)

Fazendo (A.14) igual a zero, tem-se:

$$\frac{d}{d\Sigma\overline{C}_{x_{i}}}\left[\frac{1}{n}\left(\frac{1}{\Sigma\overline{C}_{x_{i}}}+\frac{(\overline{R}g_{2}-1)^{2}}{\Sigma\overline{C}_{o_{i}}}+\frac{\overline{R}g_{2}^{2}}{\Sigma\overline{C}_{1}}\right)\right]=0 \qquad (A.15)$$

efetuando a derivada, tem-se:

.

$$0 = -\frac{1}{(\Sigma \overline{C}_{x_{i}})^{2}} + \frac{2(\overline{R}g_{i} - 1)}{\Sigma \overline{C}_{x_{i}}\Sigma \overline{C}_{o_{i}} \log \Sigma \overline{C}_{i_{i}}/\Sigma \overline{C}_{o_{i}}} + \frac{2}{\log \Sigma \overline{C}_{i_{i}}/\Sigma \overline{C}_{o_{i}}} \cdot \frac{1}{\Sigma \overline{C}_{x_{i}}\Sigma \overline{C}_{i_{i}}}$$

$$+ \frac{2}{\log \Sigma \overline{C}_{i_{i}}/\Sigma \overline{C}_{o_{i}}} \cdot \frac{1}{\Sigma \overline{C}_{x_{i}}\Sigma \overline{C}_{i_{i}}}$$
(A.16)

multiplicando todos os termos de (A.16) por $\Sigma \overline{C}_{x_i}$ e reagrupando os termos, tem-se :

$$\frac{1}{\Sigma \overline{C}_{x_{i}}} = \frac{2(\overline{R}g_{2} - 1)}{\Sigma \overline{C}_{0_{i}} \log \Sigma \overline{C}_{1} / \Sigma \overline{C}_{0_{i}}} + \frac{2 \overline{R}g_{2}}{\Sigma \overline{C}_{1} \log \Sigma \overline{C}_{1} / \Sigma \overline{C}_{0_{i}}}$$
(A.17)

ou ainda:

$$\frac{1}{\Sigma \overline{C}_{x_{i}}} = \frac{\sum_{i=1}^{2} (\Sigma \overline{C}_{i} + \Sigma \overline{C}_{i}) - 2 \Sigma \overline{C}_{i}}{\sum_{i=1}^{2} (\Sigma \overline{C}_{i} + \Sigma \overline{C}_{i}) - 2 \Sigma \overline{C}_{i}}$$
(A.18)

Substituindo os valores de $\Sigma \overline{C}_{0i}$ e ΣC_{1i} (Tabela B.1) em (A.18), tem-se:

$$\frac{1}{\Sigma \overline{C}_{x_{1}}} = \frac{\overline{R}g_{2} \cdot 949.212 - 493.260}{4.422.089.838}$$
(A.19)

Resolvendo a expressão (A.19), tem-se que o erro será mínimo para $\overline{R}g_2$ em torno de 54%.

-72-

Aplicando a expressão (A.13) para a faixa de operação do sistema, obtiveram-se os dados para a confecção da Tabela A.1 e com estes foi confeccionado o gráfico da Figura A.1, onde é mo<u>s</u> trada a variação do erro percentual ao longo da faixa de operação.

Rg,	σRg₂	100 <u>dRg,</u> Rg,
0,03	0,0211	70,3
0,06	0,0198	33,0
0,09	0,0195	21,7
0,12	0,0192	16,0
0,15	0,0190	12,7
0,18	0,0188	10,4
0,21	0,0186	8,9
0,24	0,0183	7,6
0,27	0,0182	6,7
0,30	0,0180	6,0

TABELA A.1 - Erros estatísticos na fração de vazio calculada por somatória das contagens.

culada por somatória das contagens.

-73-

A.2 - Cálculo do Erro na Fração de Vazio Calculada por Integração Numérica de Rg1

Como já foi visto no item 2, a fração de vazio, calculada pela integração numérica de Rg_1 , é dada por :

$$\overline{R}g_{2} = \frac{2}{\pi R^{2}} \int_{-R}^{R} \sqrt{R^{2} - \gamma^{2}} \frac{\log C/C_{o}}{\log C_{1}/C_{o}} dy , \qquad (2.15)$$

por integração numérica da expressão (2.15) tem-se que :

$$\overline{R}g_{2} = \frac{h}{3} \left[f_{1} + 4(f_{2} + f_{4} + f_{6}) + 2(f_{3} + f_{5}) + f_{7} \right] \stackrel{+}{=} E_{T}, \quad (2.16)$$

onde
$$f = \frac{2}{\pi R^2} \sqrt{R^2 - y^2} \frac{\log C/C_0}{\log C_1/C_0}$$
 (2.17)

Aplicando a lei de propagação de erro (ítem A.1) tem-se:

$$\sigma \overline{R} g_{2}^{2} = \left(\frac{\partial \overline{R} g_{2}}{\partial R}\right)^{2} (\Delta R)^{2} + \left(\frac{\partial \overline{R} g_{2}}{\partial Y}\right)^{2} (\Delta Y)^{2} + \left(\frac{\partial \overline{R} g_{2}}{\partial C_{O}}\right)^{2} (\Delta C_{O})^{2} + \left(\frac{\partial \overline{R} g_{2}}{\partial C_{1}}\right)^{2} \cdot (\Delta C_{1})^{2} + \left(\frac{\partial \overline{R} g_{2}}{\partial C_{O}}\right)^{2} \cdot (\Delta C)^{2}$$

$$(A.20)$$

onde:

$$\frac{\partial \overline{R}g_{2}}{\partial R} = \frac{h}{3} \left[\frac{\partial f_{1}}{\partial R} + 4 \left(\frac{\partial f_{2}}{\partial R} + \frac{\partial f_{4}}{\partial R} + \frac{\partial f_{5}}{\partial R} \right) + 2 \left(\frac{\partial f_{1}}{\partial R} + \frac{\partial f_{5}}{\partial R} \right) + \frac{\partial f_{7}}{\partial R} \right] (A.21)$$

$$\frac{\partial \overline{R}g_2}{\partial y} = \frac{h}{3} \left[\frac{\partial f_1}{\partial y} + 4 \left(\frac{\partial f_2}{\partial y} + \frac{\partial f_4}{\partial y} + \frac{\partial f_6}{\partial y} \right) + 2 \left(\frac{\partial f_3}{\partial y} + \frac{\partial f_5}{\partial y} \right) + \frac{\partial f_7}{\partial y} \right] \quad (A.22)$$

$$\frac{\partial \overline{R}g_{2}}{\partial C_{0}} = \frac{h}{3} \left[\frac{\partial f_{1}}{\partial C_{0}} + 4 \left(\frac{\partial f_{2}}{\partial C_{0}} + \frac{\partial f_{4}}{\partial C_{0}} + \frac{\partial f_{5}}{\partial C_{0}} \right) + 2 \left(\frac{\partial f_{3}}{\partial C_{0}} + \frac{\partial f_{5}}{\partial C_{0}} \right) + \frac{\partial f_{7}}{\partial C_{0}} \right] (A.23)$$

$$\frac{\partial \bar{\mathrm{R}}g_{2}}{\partial C_{1}} = \frac{h}{3} \left[\frac{\partial f_{1}}{\partial C_{1}} + 4 \left(\frac{\partial f_{2}}{\partial C_{1}} + \frac{\partial f_{4}}{\partial C_{1}} + \frac{\partial f_{5}}{\partial C_{1}} \right) + 2 \left(\frac{\partial f_{3}}{\partial C_{1}} + \frac{\partial f_{5}}{\partial C_{1}} \right) + \frac{\partial f_{7}}{\partial C_{1}} \right] (\Lambda.24)$$

$$\frac{\partial \bar{R}g_2}{\partial C} = \frac{h}{3} \left[\frac{\partial f_1}{\partial C} + 4 \left(\frac{\partial f_2}{\partial C} + \frac{\partial f_4}{\partial C} + \frac{\partial f_6}{\partial C} \right) + 2 \left(\frac{\partial f_3}{\partial C} + \frac{\partial f_5}{\partial C} \right) + \frac{\partial f_7}{\partial C} \right] \quad (A.25)$$

Sendo que:

$$\frac{\partial f}{\partial R} = \frac{2}{\pi} \frac{\log C/C_o}{\log C_1/C_o} \left[\frac{2y^2 - R^2}{R^3 \sqrt{R^2 - y^2}} \right]$$
(A.26)

Como f é uma função de g, C, C_o e C₁, todas funções de y, tem-se, pela regra da cadeia /16/, que:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial y} + \frac{\partial f}{\partial C} \frac{\partial C}{\partial y} + \frac{\partial f}{\partial C_1} \frac{\partial C_1}{\partial y} + \frac{\partial f}{\partial C_0} \frac{\partial C_0}{\partial y}, \qquad (A.27)$$

onde
$$\frac{\partial C_i}{\partial y} = \frac{\Delta' C_i}{\Delta' y} = \frac{C_{i+1} - C_i}{h}$$
; $g = \sqrt{R^2 - y^2}$ (A.23)

tal que:

$$\frac{\partial f}{\partial y} = \frac{2}{\pi R^2} \left[\frac{\log C/C_0}{\log C_1/C_0} \cdot \frac{-Y}{\sqrt{R^2 - Y^2}} + \frac{\sqrt{R^2 - Y^2}}{\log C_1/C_0} \cdot \frac{\Delta'C}{hC} + \right]$$

$$+ \frac{\sqrt{R^2 - y^2 \log C/C_0 - \log C_1/C_0}}{\log^2 C_1/C_0} \cdot \frac{\Delta^*C_0}{hC_0} - \sqrt{R^2 - y^2} \cdot \frac{\Delta^*C_0}{hC_0} + \frac{\Delta^*C_0}{hC_0$$

$$\frac{\log C/C_0}{\log^2 C_1/C_0} \cdot \frac{\Delta'C_1}{hC_1} , \qquad (A.29)$$

$$\frac{\partial f}{\partial C_0} = \frac{2}{\pi R^2} \sqrt{R^2 - Y^2} \left[\frac{\frac{\log C/C_0}{\log C_1/C_0} - 1}{\frac{C_0}{\log C_1/C_0}} \right], \quad (A.30)$$

$$\frac{\partial f}{\partial C_1} = \frac{2\sqrt{R^2 - y^2}}{\pi R^2} \left[\frac{-\log C/C_0}{\log C_1/C_0} - \frac{\log C_1/C_0}{C_1 \log C_1/C_0} \right], \qquad (A.31)$$

$$\frac{\partial f}{\partial C} = \frac{2\sqrt{R^2 - y^2}}{\pi R^2 C \log C_1/C_0}$$
(A.32)

onde:

h = 2 mm

$$\Delta y^2 = 0,25 \text{ mm}^2$$

 $\Delta R^2 = 0,0625 \text{ mm}^2$
 $\Delta C_0^2 = \frac{\overline{C}_0}{5} = 6.600 \text{ C/40s.}$ (valor máximo)
 $\Delta C_1^2 = \frac{\overline{C}_1}{5} 0$ 7.060 C/40s. (valor máximo)
 $\Delta^2 C = \frac{\overline{C}}{5} = 6.800 \text{ C/40s.}$ (valor máximo)

e $\Delta'C_0/h$, $\Delta'C_1/h$ e $\Delta'C/h$ são dados na Tabela A.2.

			Qg=0,01	2g=0,02	Qg=0,03	Qg=0,04	Qg=0,05	Qg=0,06
			m³/h	m³/h	m'/h	m³/h	m³/h	m³/h
У	∆'C _o /h	∆'C1/h	∆'C/h	∆'C/h	∆'C/h	∆'C/h	۸'C/h	∆'C/h
-6	-143,5	-33,5	28,5	-4,0	-105,5	-1,0	-105,5	31,0
-4	- 7,5	37,5	-38,5	-155,0	- 56,0	123,0	79,5	-23,0
-2	- 14,0	-11,5	-44,5	60,5	81,0	-11,0	7,0	28,5
0	46,5	53,5	60,5	59,0	107,0	102,0	158,0	70,5
2	276,0	103,5	369,0	160,5	43,0	63,5	82,5	210,0
4	144,5	36,0	88,5	120,5	255,5	225,0	106,0	129,0
6	163,5	38,0	301,0	250,0	110,5	48,5	161,0	60,5

continua ...

TABELA A.2 - Valores das derivadas numéricas das contagens em relação à posição y, usando diferença para frente.

•

			r	
	Qg=0,07	Qg=0,08	Ωg= 0,09	Qg= 0,10
У	∆'C/h	∆'C/h	∆'C/h	∆'C/h
6	74,5	- 15,0	81,5	40,0
-4	6,5	- 16,0	35,5	124,0
-2	24,0	152,5	73,0	75,5
0	76,0	127,0	38,0	2,0
2	103,5	121,5	111,5	149,0
4	158,0	88,5	77,5	154,5
6	138,5	54,5	111,0	- 85,5

TABELA A.2 - Valores das derivadas numéricas das contagens em re lação à posição y, usando diferença para frente.

Resolvendo-se a expressão (A.20), termo a termo, tem-se a Tabela A.3 onde o erro estatístico, $\sigma \bar{R} g_2$, é dado por:

$$\sigma \overline{R}g_2 = \sqrt{\sigma^2 \overline{R}g_2}$$
(A.33)

Da Tabela A.3 foi confecionado o gráfico da Figura A.2 do erro percentual, 100 $\sigma Rg_2/Rg_2$, em função da fração de vazio, com o objetivo de visualizar a distribuição do erro ao longo da faixa de operação do sistema.

FIGURA A.2 - Erro percentual total na fração de vazio, Rg,, calculada por integração numérica em função da fração de vazio.

	Qg (m³/h)	$\left \left(\frac{\Delta R g_2}{\partial R}\right)^2 \Delta R^2\right $	$\left(\frac{\partial Rg_2}{\partial v}\right)^2 \wedge y^2$	$\left(\frac{\partial Rg_2}{\partial C_0}\right)^2 \wedge C_0^2$	$\left(\frac{\partial Rg_2}{\partial C_1}\right)^2 \Delta C_1^2$	$\left(\frac{\partial Rg_2}{\partial C}\right)^2 \Lambda C^2$	σ'Rg,	aRg,	σ _{R̄g} ,/R̄g,x100
	0,01	$8,40 \times 10^{-7}$	$1,10 \times 10^{-4}$	$8,60 \times 10^{-4}$	$1,40 \times 10^{-6}$	$8,80 \times 10^{-4}$	0,00185	0,043	143,0
	0,02	$3,70 \times 10^{-6}$	$1,40 \times 10^{-4}$	$7,70 \times 10^{-4}$	$7,60 \times 10^{-6}$	$8,80 \times 10^{-4}$	0,00176	0,042	70,0
	0,03	$5,70 \times 10^{-6}$	$1,80 \times 10^{-4}$	$7,20 \times 10^{-4}$	$1,30 \times 10^{-5}$	$8,80 \times 10^{-4}$	0,00176	0,042	47,0
	0,04	$1,00 \times 10^{-5}$	$2,20 \times 10^{-5}$	$6,90 \times 10^{-4}$	$1,70 \times 10^{-5}$	$8,80 \times 10^{-4}$	0,00160	0,040	33,0
:	0,05	$1,20 \times 10^{-5}$	$2,00 \times 10^{-5}$	$6,50 \times 10^{-4}$	$2,40 \times 10^{-5}$	$8,80 \times 10^{-4}$	0,00160	0,040	26,0
	0,06	$2,0 \times 10^{-5}$	$8,60 \times 10^{-5}$	$5,60 \times 10^{-4}$	$4,50 \times 10^{-5}$	$8,80 \times 10^{-4}$	0,00160	0,040	22,0
	0,07	$1,90 \times 10^{-5}$	$6,80 \times 10^{-5}$	$5,90 \times 10^{-4}$	$3,80 \times 10^{-5}$	$8,80 \times 10^{-4}$	0,00152	0,039	18,0
	0,08	$3,30 \times 10^{-5}$	$8,30 \times 10^{-5}$	$4,70 \times 10^{-4}$	$7,40 \times 10^{-5}$	$8,80 \times 10^{-4}$	0,00152	0,039	16,0
	0,09	$4,30 \times 10^{-5}$	$1,30 \times 10^{-5}$	$4,40 \times 10^{-4}$	$8,80 \times 10^{-5}$	$8,80 \times 10^{-4}$	0,00144	0,038	14,0
	0,10	$4,70 \times 10^{-5}$	$1,60 \times 10^{-7}$	$4,20 \times 10^{-4}$	$9,90 \times 10^{-5}$	$8,80 \times 10^{-4}$	0,00144	0,038	12,7
2									

TABELA A.3 - Valores do erro estatístico, para cada vazão de gás, calculado pela expressão (A.20), termo a termo e o erro percentual.

•

A.3 - Cálculo do Erro Estatístico no Fluxo de Massa

Sendo o fluxo de massa de gás dado por :

$$G_{g} = \frac{\rho_{g} Q_{g}}{A}$$
(A.34)

onde:

- ρ_{g} = densidade do gás para a temperatura de 25[°]C e pressão atmosférica.
- Q_{q} = vazão volumétrica do gás, varia de 0,01 a 0,1 m³/h.
- A = área da secção transversal da secção de testes.

Da lei de propagação de erro, tem-se :

$$\sigma G_{g} = \frac{+}{\sqrt{\left(\frac{\partial G_{g}}{\partial Q_{g}}\right)^{2}}} \cdot \sigma^{2} Q_{g} + \left(\frac{\partial G_{g}}{\partial A}\right)^{2} \cdot \sigma^{2} A , \qquad (A.35)$$

onde:

$$\frac{\partial G}{\partial q} = \frac{\rho_q}{A}$$
(A.36)

$$\frac{\partial G_g}{\partial A} = -\frac{\rho_g Q_g}{A^2}$$
(A.37)

$$\sigma Q_{g} = \stackrel{+}{=} 0,001 \text{ m}^{3}/\text{h}$$

$$\sigma A = \stackrel{+}{=} \frac{\$.D}{2} \sigma D (m^{2}) \qquad (A.38)$$

$$\sigma D = \stackrel{+}{=} 0,0005m$$

tal que : $\sigma G_g = \stackrel{+}{=} \sqrt{\frac{\rho_g}{A}} \sigma^2 Q_g + \frac{Q_g^2}{A} \pi \sigma^2 D$ (A.39)

Desta forma, pela expressão (A.39), foram determinados os erros de cada vazão de gás, conforme mostrado na Tabela A.4,e levantada uma curva do erro percentual do fluxo de massa em fun ção do fluxo de massa, Figura A.3.

Q _g (m³/h)	ن _g (Kg/m².s)	σG _g (Kg/m².s)	100.cG _g /G _g
0,01	0,0159	0,00188	11,80
0,02	0,0319	0,00255	8,00
0,03	0,0478	0,00339	7,10
0,04	0,0637	0,00430	6,70
0,05	0,0797	0,00524	6,60
0,06	0,0956	0,00620	6,50
0,07	0,1115	0,00717	6,43
0,08	0,1275	0,00815	6,39
0,09	0,1434	0,00913	6,37
0,10	0,1593	0,01011	6,35

TABELA A.4 - Erro percentual do fluxo de massa.

FIGURA A.3 - Erro percentual total no fluxo de massa, G_{g} , em função da vazão de gás, Q_{g} .

<u>APÊNDICE</u>

4

.

. ·

•

.

B. MEDIDAS EXPERIMENTAIS

B.1 - Medidas no Plano Inferior

TUBO CHEIO ($\overline{R}g_2 = 0$)

TUBO VAZIO $(\overline{R}g_2 = 1)$

POSIÇÃO	CONTAGEM/40s	POSIÇÃO	CONTAGEM/40s
-12	37.126	-12	37.052
-10	35.981	-10	36.007
- 8	33.179	- 8	33.734
- 6	32.954	- 6	34.906
- 4	32.579	- 4	35.165
- 2	32.302	- 2	35.374
o	32.234	0	35.428
[*] 2	32.417	2	35.362
4	32.585	4	35.368
6	32.905	6	35.027
8	33.218	8	34.036
10	35.576	10	35.902
12	37.114	12	37.194

TABELA B.1 - Contagens da radiação gama emergente para tubo cheio de água e tubo vazio(Plano Inferior).

•

	Q _g = 0,01 m ³ /h	$Q_{g} = 0,02 \text{ m}^{3}/\text{h}$	$Q_{g} = 0,03 \text{ m}^{3}/\text{h}$	
POSIÇÃO	Contagen/40s	CONTAGEM/40s	CONTAGEM/40s	
-12	37.024	36.964	36.980	
-10	36.391	36.140	36.314	
- 6	33.004	33.065	33.023	
- 4	32.626	32.753	32.790	
- 2	32.416	32.514	32.571	
0	32.328	32.544	32.435	
2	32.541	32.636	32.563	
4	32.701	32.774	32.903	
6	32.944	33.089	33.175	
* 8	33.307	33.250	33.241	
10	35.471	35.954	35.599	
12	37.221	37.282	37.265	

TEBLA B.2 - Contagens de radiação gama emergente para escoamento bifásico $(Q_{f} = 0, 15 \text{ m}^{2}/\text{h} \in Q_{g} \text{ variando de } 0, 01$ a 0,10 m³/h) (Plano Inferior).

... continuação da Tabela B.2.

	$Q_{g} = 0,04 \text{ m}^{3}/\text{h}$	$Q_{g} = 0,05 \text{ m}^{3}/\text{h}$	$Q_{\dot{g}} = 0,06m^3/h$	$Q_{g} = 0,07 \text{ m}^{3}/\text{h}$	$Q_g = 0,08 \text{ m}^3/\text{h}$	$Q_g = 0,09 \text{ m}^3/\text{h}$	$Q = 0,10 \text{ m}^3/\text{h}$
POSIÇÃO	CONTAGEM/40s	CONTAGEM/40s	CONTAGEM/40s	CONTAGEM/40s	CONTAGEM/40s	CONTAGEM/40s	CONTAGEM/40s
-12	37.119	37.104	37.112	37.106	37.014	36.993	37.031
-10	36.235	35.966	35.797	35.815	35.476	36.073	36.092
- 8	33.281	33.172	33.283	33.319	33.273	33.346	33.184
- 6	33,203	33.309	33.380	33.469	33.358	33.430	33.493
- 4	32.937	32.984	33.045	33.140	33.109	33.177	33.244
- 2	32.705	32.627	32.843	32.952	32.956	33.066	33.131
o	32.639	32.788	32.798	32.805	33.014	33.009	33.209
2	32.660	32.729	32.861	33.026	33.068	33.114	33.151
4	32,926	32.960	33.203	33.322	33.408	33.428	33.458
6	33.245	33.324	33.403	33.482	33.562	33.580	33.637
8	33.410	33.294	33.205	33.356	33.246	33.400	33.371
10	35.727	35.396	35.999	36.001	36.076	35.772	36.030
12	37.126	37.142	37.133	37.140	37.231	37.273	37.215

TABELA B.2 - Contagens de radiação gama emergente para escoamento bifásico (Q_{g} = 0,15 m³/h e Q_{g} variando de 0,01 a 0,10 m³/h).

			~-
Vg	Ēg,	Rg,	₽g,
(m ³ /h)	calculada com (2.16)	calculada com (2.22)	calculada com (5.1)
0,01	2,8 %	3,2 %	3,0 %
0,02	6,8 %	7,8 %	6,0 %
0,03	7,8 %	8,2 %	9,0 %
0,04	11,1 %	13,0 %	12,0 %
0,05	13,0 %	15,2 %	15,0 %
0,06	16,6 %	19,7 %	18,0 %
0,07	19,4 %	23,3	21,0 %
0.08	21,3 %	24,8 %	24,0 %
0.09	22,6 %	26,6 %	27,0 %
0,10	25,2 %	29,5 %	30,0 %
	5		

TABELA B.3 - Frações de Vazio ($\overline{R}g_2$), Q_{g} = 0,15 m³/h (constante).

B.2 - Medidas no Plano Superior

TUBO CHEIO ($\overline{R}g_2 = 0$)

TUBO VAZIO $(\overline{R}g_2 = 1)$

POSIÇÃO	CONTAGEM/40s		POSIÇÃO	CONTAGEM/40s
-12	36.648		-12	36.545
-10	36.390		-10	36.515
-* 8	34.461		- 8	34.359
- 6	32.797		- 6	34.243
- 4	32.510		- 4	34.913
- 2	32.495		- 2	34.988
0	32.467		0	34.965
2	32.560		2	35.072
4	33.112		4	35.279
6	33.401		6	35.207
8	33.728		8	35.131
10	34.163		10	35.915
12	37.360		12	36.779

TABELA B.4 - Contagens de Radiação Gama Emergente para Tubo Cheio de Água e Tubo Vazio (Plano Superior).

CC ...

MONTALLE ENERGIA NUCLEAR, SP

	$Q_g = 0,01 \text{ m}^3/h$	Q _g = 0,02 m³∕h	$Q_g = 0,03 \text{ m}^3/\text{h}$
POSIÇÃO	CONTAGEM/40s	CONTAGEM/40s	CONTAGEM/40s
$ \begin{array}{rrrrr} - 12 \\ - 10 \\ - 8 \\ - 6 \\ - 4 \\ - 2 \\ 0 \\ 2 \\ \end{array} $	36.556 36.306 34.409 32.755 32.698 32.621 32.532 32.653	36.613 36.378 34.581 32.925 32.917 32.607 32.728 32.846	36.667 36.394 35.021 33.015 32.804 32.692 32.854 33.068
4	33.191	33.167	33.154
6	33.368 33.970	33.408 33.908	33.665
10	34.329	34.752	34.225
12	37.362	37.438	37.127

TABELA B.5 - Contagens de radiação gama emergente para escoamento bifásico $(Q_{l} = 0, 15 \text{ m}^{3}/\text{h} = Q_{g} \text{ variando de } 0, 01$ a 0,10 m³/h) (Plano Superior).

... continuação da Tabela B.5.

•

	Q _g = 0,04 m ³ /h	Q _g = 0,05 m ³ /h	$Q_g = 0,06 \text{ m}^3/\text{h}$	Q _g = 0,07 m ³ /h	$\hat{g}_{g} = 0,08 \text{ m}^{3}/h$	$Q_{g} = 0,09 \text{ m}^{3}/\text{h}$	$Q_{g} = 0,10 \text{ m}^{3}/10$
POSIÇÃO	CONTAGEM/40s	CONTAGEM/40s	CONTAGEM/40s	CONTAGEM/40s	CONTAGEM/40s	CONTAGEM/40s	CONTAGEM/40s
-12	36.735	36.574	36.565	36.606	36.566	36.602	36.540
-10	36.206	36.396	36.535	36.389	36.414	36.390	36.466
- 8	33.933	33.982	34.339	34.315	34.257	34.353	34.336
- 6	32.721	32.983	32,959	32.861	33.032	33.017	33.001
- 4	32.719	32.773	33.021	33.010	33.002	33.180	33.081
- 2	32,965	32,932	32.975	32.023	32.970	32.251	33.329
0	32,943	32.918	33.032	33.071	33.275	33.397	33.480
2	33.147	33.234	33.173	33.223	33.529	33,473	33.484
4	33.274	33.399	33.593	33.430	33.772	33.696	33.782
6	33.724	33.611	33.851	33.746	33.949	33.851	34.091
8	33.821	33.933	33.972	34.023	34.058	34.073	33.920
10	34.112	34.417	34.551	34.289	34.422	34.292	34.333
12	37.130	37,158	37.108	37.232	37.233	37.201	37.102

.

TABELA B.5 - Contagens de radiação gama emergente para escoamento bifásico (Q_{g} = 0,15 m³/h e Q_{g} variando de 0,01 a 0,10 m³/h).

VAZÃO Q m ³ /h			Rg,
GÁS	ÁGUA	REGIME DE ESCOAMENTO	calculado com
0.01	0,150	Bolhas	3.0
0.02		Bolhas	6.0
0.03		Bolhas	9.0
0.04		Bolhas aqlomeradas	12.0
0,05		Bolhas aqlomeradas	15,0
0,06		Bolhas aqlomeradas	18,0
0,07		'Slug"de bolhas aglomeradas	21,0
0,08		"Slug" de bolhas aglomeradas	24,0
0,09		Slug	27,0
0,10		Slug	30,0
0,01		Bolhas	2,8
0,02		Bolhas	5,6
0,03		Bolhas	8,3
0,04		Bolhas aglomeradas	11,1
0,05	0 185	Bolhas	13,9
0,06	0,105	Bolhas	16,7
0,07		Bolhas aglomeradas	19,4
0,08		[*] Slug [*] de bolhas aglomeradas	22,2
0,09		"Slug de bolhas aglomeradas	25,0
0,10		"Slug de bolhas aglomeradas	27,8
0,01		Bolhas	2,5
0,02		Bolhas	4,9
0,03		Bolhas	7,4
0,04		Bolhas	9,9
0,05	0,220	Bolhas	12,4
0,06		Bolhas	14,8
0,07		Bolhas	17,3
0,08		Bolhas aglomeradas	19,8
0,09		Bolhas aglomeradas	22,2
0,10		'Slug [®] de bolhas	24,7
		l	

•

VAZÃO Q m ³ /h		REGIME DE ESCOAMENTO	Rg ₂ calculado com
GÁS	ÁGUA		(5.1)
0,01		Bolhas	2,3
0,02		Bolhas	4,6
0,03		Bolhas	6,8
0,04		Bolhas	9,1
0,05	0.250	Bolhas	11,4
0,06		Bolhas	13,7
0,07		Bolhas	16,0
0,08		Bolhas aglomeradas	18,3
0,09		Bolhas aglomeradas	20,6
0,10		"Slug" de bolhas	22,8
0,01		Bolhas	2,1
0,02		Bolhas	4,2
0,03		Bolhas	6,4
0,04	1	Bolhas	8,5
0,05	0.280	Bolhas	10,6
0,06		Bolhas	12,7
0,07		Bolhas	14,9
0,08		Bolhas	17,0
0,09		Bolhas aglomeradas	19,1
0,10		Bolhas aglomeradas	21,2
0,01	•	Bolhas	1,9
0,02		Bolhas	3,9
0,03		Bolhas	5,8
0,04		Bolhas	7,8
0,05	0,320	Bolhas	9,7
0,06		Bolhas	11,6
0,07		Bolhas	13,6
0,08		' Bolhas	13,5
0,09		Bolhas aglomeradas	17,5
0,10		Bolhas aglomeradas	19,4

VAZÃO Q m ³ /h		DECTNE DE ECCONENTO	$\overline{R}g_{2}$
GÁS	ÁGUA		(5.1)
0,01	0,355	Bolhas	1,8
0,02		Bolhas	3,6
0,03		· Bolhas	5,4
0,04		Bolhas	7,2
0,05		Bolhas	9,0
0,06		Bolhas	10,8
0,07		Bolhas	12,6
0,08	,	Bolhas	14,4
0,09		Bolhas	16,2
0,10		Bolhas aglomeradas	18,0
0,01	0,380	Bolhas	1,7
0,02		Bolhas	3,4
0,03		Bolhas	5,1
0,04		Bolhas	6,7
0,05		Bolhas	8,4
0,06		Bolhas	10,1
0,07		Bolhas	11,8
0,08		Bolhas	13,5
0,09		Bolhas	15,2
0,10		Bolhas	16,9
0,01		Bolhas	1,6
0,02		Bolhas	3,2
0,03	0,420	Bolhas	4,8
0,04		Bolhas	6,4
0,05		Bolhas	8,0
0,06		Bolhas	9,6
0,07		Bolhas	11,2
0,08		Bolhas	12,8
0,09		Bolhas	14,4
0,10		Bolhas	16,0

.

.
.

۲.

VAZÃO Q m ³ /h		BECINE DE ECCOMENTO	Rg,
GÁS	ÁGUA	REGIME DE ESCOAMENTO	(5.1)
0,01		Bolhas	1,5
0,02		Bolhas	3,1
0,03		Bolhas	4,6
0,04		Bolhas	6,2
0,05		Bolhas	7,7
0,06		Bolhas	9,2
0,07		Bolhas	10,8
0,08		Bolhas	12,3
0,09		Bolhas	13,9
0,10		Bolhas	15,4

TABELA B.7 - Regimes de Escoamento Bifásico Observados Visualmente.

.

.

<u>A PÊNDICE</u>C

.

.

.

•

.

C. CURVAS DE CALIBRAÇÃO

C.1 - Calibração dos Rotâmetros

C.1.1 - Rotâmetro de Água

Utilizando um tubulão graduado e um cronômetro foi feita a calibração do rotâmetro e levantada sua curva de calibração. A faixa de operação do rotâmetro vai de 0,13 a 0,44 m³/h, conforme a Figura C.1.

C.1.2 - Rotâmetro de Gás

A calibração do rotâmetro de gás foi feita utilizando

medidores de vazão de gás, tipo bolha de sabão, como padrão primário, para calibração do rotâmetro. Esse medidor consiste de um tubo de vidro, graduado, no qual se mede o tempo que a película de sabão leva para percorrer um volume conhecido (Figura C.2).Es se método tem sido desenvolvido para medir pequenas vazões de gás (até cerca de 2,2 m³/h). O erro total na determinação de vazões com medidores de bolha é da ordem de $\stackrel{+}{=}$ 0,5% /31/.

FIGURA C.2 - Medidor de vazão de gás tipo bolha de sabão.

COMPANY THE STATE STATE AND A MOUL LAR/SP

-96-

Na Figura C.3 é apresentada a curva de calibração onde a vazão varia de 0,01 a 0,1 m³/h.

FIGURA C.3 - Curva de calibração do rotâmetro de gás.

<u>A PÊNDICE</u>D

•

.

•

.

.

•

APENDICE D

D. CALCULO DA BLINDAGEIA DA FONTE

Com o objetivo de proteger as pessoas, a fonte de radia ção tem que ser blindada. É necessário que o casco de blindagem, além de proporcionar uma blindagem adequada, tenha um sistema mecânico provido de um obturador capaz de fechar a fonte quando esta não está em operação, e quando em operação, proporcionar um feixe bem definido.

Assumindo que a fonte é isotrópica e pontual para o cá<u>l</u> culo da espessura do casco de blindagem, foi assumido como critério que a taxa de dose na superfície do casco não excedesse a 2,5 mRem/hora, dando assim uma taxa de dose anual de 5 Rem/ano p<u>a</u> ra o trabalhador (Tabela D.1).

MÁXIMO PERMISSÍVEL DE EXPOSIÇÃO À RADIAÇÃO POR ANO PARA TRABA-			
LHADORES /50/			
<u>ÓRGÃO</u>	LIMITE ANUAL (REM)		
Corpo inteiro, gônadas, coluna	5		
Órgãos simples, excluindo as gônadas,co- luna, ossos, tireóide e pele	15		
Ossos, tireóide, pele do corpo inteiro (excluindo a pele das mãos, antebraços,			
pés e tornozelos)	30		
Mãos, antebraços, pés e tornozelos	75		

TABELA D.1 - Taxa de dose absorvida para trabalhadores.

A espessura da parede do casco de blindagem foi calcul<u>a</u> da através da lei exponencial de absorção, modificada pelo fator de build-up, $B(\mu x)$.

$$I = I_0 B(\mu x) e^{-\mu x}$$
(D.1)

-100-

onde I_0 , é a taxa de dose a uma distância x da fonte, quando esta se encontra sem blindagem e é obtida por /41/:

$$I_o = 1.7 \times 10^5 (\mu_a/\dot{p}) \frac{\alpha \cdot E_o \cdot e}{x^2}$$
 (D.2)

onde:

- μ = coeficiente de absorção linear para o chumbo que é igual a 1,350 cm⁻¹ /50/
- μ_a/ρ = coeficiente de absorção de radiação gama do tecido hum<u>a</u> no que é igual a 0,0850 cm²/g /50/

 α = atividade da fonte que é igual a 68 mCi

- E = energia de emissão dos fótons que é igual a 662 KeV
 - e = taxa de emissão da fonte na energía E_o que é de 0,851(Tabela 4.1)
 - x = espessura do casco de blindagem (cm)
 - I = taxa de dose na superfície do casco de blindagem de chum bo com espessura x (Rem/h)
- $B(\mu x) = fator de aumento de radiação, função do material e$ $da espessura x. Os valores de <math>B(\mu x)$ encontram-se tabelados em /50/.

Substituindo os valores acima na equação (D.2) e então substituindo esta, na equação (D.1), obtém-se:

$$I = 553 B(\mu x) x^{-2} e^{-\mu x}$$
, (D.3)

Utilizando os valores de $B(\mu x)$, tabelados por /50/, e variando o valor de x em (D.3), obtém-se a Tabela D.2.

x (cm)	I (Rem/h)
4	$3,900 \times 10^{-1}$
5	$7,300 \times 10^{-2}$
6	$1,400 \times 10^{-2}$
7	$2,700 \times 10^{-3}$
8	$5,300 \times 10^{-4}$
•	0,000 1 20

TABELA D.2 - Taxa de dose na superfície da blindagem

.

ŧ

Da Tabela D.2, observa-se que para a espessura de 8,0 cm a taxa de dose na superfície é 0,53 mRem/h, portanto, infer<u>i</u> or à taxa de dose permissível. Assim, a blindagem da fonte de Césio-137 utilizada é de chumbo com 8,0 cm de espessura.