

37º CONGRESSO BRASILEIRO DE MEDICINA NUCLEAR

Forma de APRESENTAÇÃO ORAL

apresentação

Eixo / Subeixo RADIOFARMÁCIA / TRABALHOS CIENTÍFICOS (TEMAS LIVRES)

Insert Funding FAPESP (7/50332-0); CAPES (Finance Code 001) and CNPq (INCT-465763/2014-6, INCT

Agency 406761/2022-1; Sisfóton 440228/2021-2); CAPES - Finance Code : PROEX

88887.595780/2020-00; FAPESP (2013-26113-6); Projeto IPEN 2020.06.IPEN.08.

Codigo do 453

trabalho

Título MICROFLUÍDICA, UMA TECNOLOGIA APLICADA À CONCENTRAÇÃO DE 18F

PARA PRODUÇÃO DE RADIOFÁRMACOS.

Autores ANTONIO ARLEQUES GOMES, ARIAN PÉREZ NARIO, ANDRÉ LUIS

LAPOLLI, EDUARDO LANDULFO, EMERSON SOARES BERNARDES, WAGNER DE

ROSSI

Autor Principal ANTONIO ARLEQUES GOMES

Instituição INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES _IPEN/USP

E-mail antonio.gomes@usp.br

Introdução. O uso de radiofármacos marcados com ¹⁸F para o diagnóstico clínico por imagem PET (tomografia por emissão de pósitrons) de diversas doenças tem aumentado consideravelmente. O maior radiofármaco aplicado a diagnósticos com PET é o [¹⁸F]-2-desoxi-2-fluoro-D-glicose (FDG) e a sua preparação requer a utilização de equipamentos especializados (e caros) para proteger o farmacêutico que o prepara. Assim, à medida que a demanda de radiofármacos PET aumentar, colocará uma pressão significativa nas instalações de produção de traçadores PET, a qual necessitará de investimento em novas tecnologias de produção de radiofármacos. Uma tecnologia chave desenvolvida nos últimos tempos tem sido o uso de sistemas microfluídicos. Os dispositivos microfluídicos oferecem muitas vantagens para a síntese de radiofármacos de curta duração (por exemplo, ¹⁸F) tais como: reações mais rápidas, transferência de calor eficiente, alta relação superfície – volume e rendimentos

mais elevados. Embora os sistemas microfluídicos estudados para radiofármacos existam há quase 20 anos, no Brasil, até onde sabemos, esta tecnologia e estudo é inédita. Objetivos. Apresentar os primeiros resultados no desenvolvimento de um chip microfluídico para uma "microcoluna" destinada ao processo de retenção e eluição de ¹⁸F. **Metodologia.** A microcoluna foi usinada em vidro óptico de borosilicato – BK7 utilizando a técnica de ablação com laser de pulsos ultracurtos. Após a microusinagem, a microcoluna é preenchida com a mesma resina utilizada no cartucho convencional de síntese "Sep-Pak Accell Plus QMA Plus Light" da fabricante WatersTM. Ambas são posteriormente submetidas a testes de desempenho comparativos de eficiência na fase de retenção e eluição de ¹⁸F. **Resultados**. Foram realizados 4 testes comparativos para ambas as fases (primeira etapa da síntese de 18 F-FDG), com atividades (1,5 \pm 0,3 mCi e 248 \pm 11 mCi; "n = 2"). Os resultados demostraram que a eficiência da microcoluna é equivalente à da coluna convencional (QMA Plus Light) na fase de retenção (99,3% ± 0,67 vs 99.6% \pm 0.32). No entanto, na fase de eluição de ¹⁸F, houve uma diferença significativa entre ambas (99.93% \pm 0,18 vs 77,38% ± 15,54), destacando a grande vantagem da microcoluna. Conclusão. A integração do cartucho de troca iônica em um chip, com a técnica de ablação com laser de pulso ultracurto, abre as portas para chips de radiofarmácia menores e mais eficientes para a produção de ¹⁸F-FDG e outros compostos. Os resultados experimentais inéditos no Brasil demonstram que as etapas iniciais da produção de doses prontas para humanos (pré-concentração de flúor) podem ser realizadas com uma eficiência superior nos parâmetros de eluição do ¹⁸F em comparação a síntese com cartucho convencional.

Palavras Chave Microfluídica, Radiofármaco, PET