Effects in the population inversion of ³H₄ level in Tm, Tm-Tb and Tm-Eu doped germanate glasses for amplifiers applications

A. F. H. Librantz^a, L. Gomes^a, G. Pairier^b, S. J. L. Ribeiro^b and Y. Messaddeq^b

^aCentro de Lasers e Aplicações, IPEN-SP, Travessa R-400, Cidade Universitária, CEP 05508-900, São Paulo, Brazil Electronic mail: lgomes@ipen.br

^bLaboratório de Materiais Fotônicos, Instituto de Química de Araraquara, UNESP, São Paulo, Brazil

ABSTRACT

The population inversion of the Tm^{3+} in GLKZ glass involved in the 1470 nm emission (${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{F}_{4}$) as a function of Tb (or Eu) concentration was calculated by computational simulation for a CW laser pumping at 792 nm. These calculations were performed using the experimental Tm \rightarrow Tb an Tm \rightarrow Eu transfer rates and the spectroscopic parameters of the Tm (0.1 mol %) system. The result shows that 0.2 mol % (Tb³⁺) and 0.4 mol % of Eu³⁺ ions propitiate best population inversion of Tm³⁺ (0.1 mol %) maximizing the amplification coefficient of germanate (GLKZ) glass when operating as laser intensity amplification at 1470 nm. Besides the effective deactivation of the ${}^{3}\text{F}_{4}$ level, the presence of Tb³⁺ or Eu³⁺ ions introduce a depopulation of the ${}^{3}\text{H}_{4}$ emitting level by means of a cross relaxation process with Tm³⁺ ions. In spite of this, the whole effect is verified to be benefic for using Tm-doped GLKZ glass codoped with Tb³⁺ or Eu³⁺ as a suitable material for confectioning optical amplifiers that operates in the S-band for telecommunication. PACS code: 78.50, 78.55, 71.55

1. INTRODUCTION

Tellurite ¹, chalcogenide ² and heavy metal fluoride glasses ³ have been considered as key-materials for thulium doped fiber amplifier operation in the S-band (1450-1510 nm) mainly due to their low phonon energies (~580 cm⁻¹). Nevertheless, Tm:Ho doped lead cadmium fluorogermanate glass has been recently used as an alternative for developing material for fiber optical amplifier using Tm³⁺ emission at 1470 nm for telecommunication ⁴. In this work we investigated the Tm³⁺ infrared emission properties in GeO₂ based glass due to its favorable optical properties such as a wide transmission window (typically 300-5000 nm), high linear (1.65) refractive indices, good corrosion resistance and mechanical stability, and low cut-off phonon energy among oxide materials (800 cm⁻¹). Also this material has high solubility for rare earth doping and low fusion temperature. It has been observed in the literature that thulium doped oxide and fluoride glasses show an intrinsic problem for the optical operation at ~1500 nm because the lower (³F₄) excited state has longer lifetime then the upper excited level (³H₄). A deactivation of ³F₄ state of Tm³⁺ is important. In view of these difficult, this article has the aim of studying the Tm, Tm:Tb, and Tm:Eu doped germanate glasses based on the composition GeO₂-Li₂O-K₂O-ZnO to characterize the energy transfer process and to discuss some relevant theoretical aspect of the ³F₄ deactivation of Tm³⁺ state by Tb³⁺ (or Eu³⁺) ions in GLKZ glass.

2. EXPERIMENTAL PROCEDURE

Germanate glasses of GeO₂-Li₂O-K₂O-ZnO (GLKZ) family were prepared as single (Tm) and double-doped (Tm:Tb) and (Tm:Eu) for time-resolved luminescence spectroscopy. Two sets of GLKZ glasses were prepared from ultra pure oxide starting materials (P. A. Aldrich) with the following compositions were Tm concentration was kept equal to 0.1 mol %.

(*i*) Tm doped sample:

70GeO₂-10Li₂O-10K₂O-9.95ZnO-0.05Tm₂O₃

Solid State Lasers and Amplifiers II, edited by Alphan Sennaroglu, Proc. of SPIE Vol. 6190, 61901G, (2006) 0277-786X/06/\$15 · doi: 10.1117/12.684771

(*ii*) Tm:Tb (or Tm:Eu) codoped samples:

70GeO2-10Li₂O-10K₂O-(9.95-y/2)ZnO-0.05Tm₂O₃-(y/2)Re₂O₃ (y = 0.1, 0.2, 0.4 and 0.8 mol %) where Re=Tb or Eu.

Tm:GLKZ and Tm:Re:GLKZ glasses were produced by melting the starting materials at 1150°C for 30 minutes in a Pt-Au crucible. The liquids were poured into brass molds and annealed at 400°C for 4 h to remove the mechanical stresses. The samples were cut and polished into 15 x 10 x 5 mm pieces. Absorption spectra were obtained using a spectrophotometer Cary/OLIS 17D operating in the range of 300-2000 nm. A selective luminescence excitation by tunable OPO laser was employed to measure the Tm luminescence to verify the Tm (³H₄) decay and the Tm (³F₄) \rightarrow Re energy transfer. The lifetimes of Tm³⁺ excited states, ³H₄ and ³F₄, were measured using a pulsed laser excitation (4 ns) from a tunable optical parametric oscillator (OPO) pumped by the second harmonic of a *Q*-switched Nd-YAG laser Brilliant B from Quantel. Laser excitations at 776 and 1671 nm were used to excite the ³H₄ and ³F₄ states of Tm³⁺, respectively. The time-dependent luminescence of Tm³⁺ was detected by an InSb (77K) infrared detector (Judson model J10D) with a fast preamplifier (response time of 0.5 µs) and analyzed using a digital 200 MHz oscilloscope from Tektronix (TDS 410). All the fluorescence decay times were measured at 300 K. Band pass filters with 80 % of transmittance at 1400 and 1700 nm with a half width of 10 nm and an extinction coefficient of ~10⁻⁵, were used to measure these luminescence signals.

3. EXPERIMENTAL RESULTS

3.1 Luminescence effect on the ³H₄ excited state of Tm³⁺

Figure 1(a) shows the effect on the luminescence decay of the ${}^{3}H_{4}$ excited state of Tm³⁺ due to the Tm (${}^{3}H_{4}$) \rightarrow Tb (${}^{7}F_{0,1,2}$) non-radiative energy transfer in (Tm:Tb) doped germanate glass. A strong decreasing of the 1470 nm luminescence is seen in Fig. 1(a) in Tb codoped samples. Figure 2 exhibits the Eu³⁺ effects on Tm³⁺ emissions for Tm:Eu:GLKZ glasses.

Figure 1(a). Tm^{3+} luminescence decay in Tm (0.1) and Tm (0.1): Tb(y): GLKZ glasses using several concentrations of Tb (y = 0, 0.1, 0.2, 0.4, and 0.8 mol %). Fig. 1(a) shows the 1470 nm luminescence decay of ${}^{3}\text{H}_{4}$ (Tm) state using a laser excitation at 776 nm with

time duration of 4 ns (10 Hz) and 10 mJ. Fig. 1(b) shows the 1700 nm luminescence decay of the ${}^{3}F_{4}$ (Tm) state using the laser excitation at 1671 nm of 4 ns of time duration (10 Hz) and 10 mJ.

Figure 2. Tm^{3+} luminescence decay in Tm (0.1) and Tm (0.1): Eu(y): GLKZ glasses using several concentrations of Eu (y = 0, 0.1, 0.4, 0.4, and 0.8 mol %). Fig. 2(a) shows the 1470 nm luminescence decay of ${}^{3}\text{H}_{4}$ (Tm) state using a laser excitation at 776 nm with time duration of 4 ns (10 Hz) and 10 mJ. Fig. 2(b) shows the 1700 nm luminescence decay of the ${}^{3}\text{F}_{4}$ (Tm) state using the laser excitation at 1671 nm and 10 mJ.

Solid line of Figs. 1(a) and 2(a) represent the best fitting of 1470 nm luminescence decay obtained using the Burshtein model 5 . This model is given by Eq. (1), which includes the donor migration in the energy transfer process.

$$I = I_0 \exp\left(-\frac{t}{\tau_D} - W t - \gamma_2 \sqrt{t}\right)$$
(1)

were τ_D is the intrinsic donor decay and γ_2 (s^{-1/2}) is the energy transfer parameter and W (s⁻¹) is the energy transfer rate due to the donor migration contribution by hopping. The total transfer rate (s⁻¹) and the total lifetime of ³H₄ (Tm) state were calculated using Eqs. (2) and (3), respectively.

$$W_2 = W + \gamma_2^2 - 16.8^2 \tag{2}$$

$$\tau_2^{-l} = W_{CR} + W_2 + \frac{l}{\tau_D}$$
(3)

 τ_D is the intrinsic lifetime of ${}^{3}\text{H}_4$ (Tm), which is equal to 295 µs for [Tm] of 0.1 mol %. W_{CR} is the cross relaxation rate involving the ${}^{3}\text{H}_4$ excited and ${}^{3}\text{H}_6$ ground states of Tm³⁺ ions, which exists in Tm doped GLKZ glass at lower concentrations (0.1 mol %). $W_{CR} = 281 \text{ s}^{-1}$ according to the best fitting of the luminescence decay curves. Analogous results were encountered for Tm:Eu GLKZ glass. Table 1 gives the energy transfer parameters, the total luminescence lifetimes and luminescence efficiencies for the Tm (${}^{3}\text{H}_4$) \rightarrow Tb (${}^{7}\text{F}_{0,1,2}$) and Tm(${}^{3}\text{H}_4$) \rightarrow Eu(${}^{7}\text{F}_6$) systems.

		_					
${}^{3}\text{H}_{4}$ (τ_{D} = 295 µs)							
[Tb]	$\gamma_2 (s^{-1/2})$	$W(s^{-1})$	$W_2(s^{-1})$	$ au_2$ (µs)	η_ℓ		
0	16.8	0	0	272	0.92		
0.1	26.7	35	470	241	0.82		
0.2	28.7	169	713	228	0.77		
0.4	48.4	194	2259	169	0.57		
0.8	62.6	709	4347	125	0.42		
[Eu]							
0.1	40.0	0	1319	190	0.64		
0.2	46.9	23	1937	170	0.58		
0.4	47.8	727	2738	150	0.51		
0.8	77.4	459	6174	99	0.33		
W - 281	e ⁻¹ (³ H · ³ H ore	or relevation)					

Table 1. The energy transfer parameters γ_2 and W, the total lifetime and luminescence efficiency (η_i) of the ³H₄ excited state of Tm³⁺ due to Tm $({}^{3}H_{4}) \rightarrow$ Tb $({}^{7}F_{0})$, Eu $({}^{7}F_{6})$ energy transfers are given in (Tm:Tb) and (Tm:Eu) doped GLKZ glasses.

 $= 281 \text{ s}^{-1} (^{3}\text{H}_{4}; ^{3}\text{H}_{6} \text{ cross-relaxation})$

3.2 Luminescence effects on the ${}^{3}F_{4}$ excited state of Tm³⁺

Figures 1(b) shows the luminescence decay of the ${}^{3}F_{4}$ excited state of Tm³⁺ observed at 1700 nm, due to the Tm $({}^{3}F_{4}) \rightarrow Tb({}^{7}F_{0})$ non-radiative energy transfer in Tb codoped germanate glasses. Figure 2(b) exhibits the Eu³⁺ effects on Tm³⁺ emissions for Tm:Eu:GLKZ glasses. The ${}^{3}F_{4}$ luminescence decay could be best fitted applying Bursthein model using Eq. (1) resulting the transfer parameters W negligible and γ with a significant value, so indicating that the Inokuti-Hirayama model ⁶ is more appropriated in the Tm $({}^{3}F_{4})$: Tb and Tm $({}^{3}F_{4})$: Eu systems exhibited in Eq. (4) for a dipoledipole interaction Best fitting of the ³F₄ luminescence decay was done using Eq. (4), which sure does not involve donor migration among ${}^{3}F_{4}$ (Tm) excited state.

$$I = I_0 \exp\left(-\frac{t}{\tau_D} - \gamma_I \sqrt{t}\right) \tag{4}$$

where γ_l (s^{-1/2}) is the energy transfer parameter. In this case, the energy transfer rate W_l (s⁻¹) was calculated using Eq. (5).

$$W_1 = \gamma_1^2 - 10.8^2 \tag{5}$$

According to the luminescence fitting, the intrinsic lifetime of ${}^{3}F_{4}$ excited state is 2.45 ms. It was observed that the γ_{1} parameter is equal to 10.8 s^{-1/2} for the best fitting of the ${}^{3}F_{4}$ luminescence decay for the single doped glass with Tm (0.1 %). This suggests that an unknown quenching effect is present in this sample, with a probability rate named W_{other} equals to 117 s⁻¹. This non-radiative rate (W_{other}) (or luminescence quenching) will be used in the calculation of population distribution in Tm(0.1), Tm(0.1):Tb(y) and Tm(0.1):Eu(y) systems). The total lifetime (τ_1) of the ³F₄ state of Tm³⁺ can be calculated by

$$\tau_I^{-l} = W_{other} + W_I + \frac{1}{\tau_D} \tag{6}$$

The energy transfer parameters and the total lifetime and luminescence efficiency (η_ℓ) due to Tm (3F_4) \rightarrow Tb (${}^7F_{0,1,2}$) and Tm $({}^{3}F_{4}) \rightarrow$ Tb $({}^{7}F_{6})$ interactions are given in Table 2.

	3]	$F_4 (\tau_D = 2.45 \text{ ms})$		
[Tb]	$\gamma_l (s^{-1/2})$	$W_{l}(s^{-1})$	τ_{l} (µs)	η_ℓ
0	10.8	0	1900	0.78
0.1	30.4	805	752	0.31
0.2	64.1	3991	221	0.09
0.4	86.2	7321	128	0.05
0.8	164.7	27000	36	0.01
[Eu]				
0.1	35.8	1163	553.6	0.23
0.2	49.2	2310	339.5	0.14
0.4	74.5	5430	164.6	0.07
0.8	147.3	21581	45	0.02
$W_{} = 116$	$6 \mathrm{s}^{-1}$ (unknown quen	ching of ${}^{3}E_{4}$ state)		

Table 2. The energy transfer parameter γ_{l} , the total lifetime and luminescence efficiency (η_{l}) of the ${}^{3}F_{4}$ excited state of Tm³⁺ due to Tm $({}^{3}F_{4}) \rightarrow$ Tb $({}^{7}F_{0})$, Eu $({}^{7}F_{6})$ interaction are given in (Tm:Tb) and (Tm:Eu) doped GLKZ glasses.

(unknown quenching of F_4 state).

We have seen that W_1 has a quadratic dependence on Tb^{3+} concentration that is compatible with the Inokuti-Hirayama model for the Tm \rightarrow Tb energy transfer. This result indicates that Tb³⁺ acceptor ions does not saturate by the Tm \rightarrow Tb transfer at least in the concentration scale used in this work, in opposite to that has been observed in the case of Tm $({}^{3}F_{4})$ \rightarrow Ho (⁵I₇) transfer in ZBLAN glass ⁷.

4. DISCUSSION

4.1 Rate equations for the Tm:Tb and Tm:Eu GLKZ glasses

Figure 3 shows the schematic energy levels diagram used for the Tm:Tb system considered for continuous laser pumping at 792 nm, which also represents approximately the diagram used for Tm:Eu systems.

Figure 3. A schematic energy levels diagram used for the (Tm:Tb) and Tm:Eu systems considered for continuous laser pumping at 792 nm. n_0 , n_1 , n_2 are the population of the Tm³⁺ and the n_3 and n_4 are the population of Tb³⁺ or Eu³⁺ ions.

The following rate equations were also derived for this system and the equilibrium populations were derived from the numerical solutions obtained using the Runge-Kutta numerical method (4^{th} order). We have assumed that n_4 population is negligible for both systems ions (Tm:Tb and Tm:Eu) because the acceptor levels ${}^7F_0(Tb)$ and ${}^7F_6(Eu)$ are strongly depopulated by an effective intrinsic multiphonon decay to the next lower level ${}^7F_{3,4}$ for Tb $^{3+}$ and ${}^7F_5(Eu^{3+})$. The small energy difference (~ 500 cm⁻¹) existing in these systems strongly competes with the radiative transition. As a consequence the luminescences from these levels are not observed. By this arguments, we have considered n₃ equal to the Tb (or Eu) concentration or $n_3 = y$ (mol %).

$$\frac{dn_0}{dt} = -\sigma_{12} n_0 I_P + \frac{n_1}{\tau_1} + \frac{B_{20}}{\tau_2} n_2 - W_{CR} n_0 n_2 + W_1 n_1 y + W_{other} n_1$$
(7)

$$\frac{dn_1}{dt} = 2W_{CR} n_0 n_2 + \frac{B_{2l}}{\tau_2} n_2 + \frac{B_{2l}}{\tau_2} n_2 - \frac{n_1}{\tau_1} - W_l n_1 y + W_2 n_2 y - W_{other} n_1$$
(8)

$$\frac{dn_2}{dt} = \sigma_{12} n_0 I_P - \frac{n_2}{\tau_2} - W_{CR} n_0 n_2 - W_2 n_2 y$$
(9)

Calculations were performed for single Tm (0.1) doped and Tm (0.1): Re(y) double-doped germanate glasses (y = 0, 0.1, 0.2, 0.4 and 0.8) using Scilab software (free software available in the web).

The $n_i(t)$ populations evolute to equilibrium values after switching the pumping (CW) laser (792 nm) ON at t = 0, and therefore they were considered to evaluate the stationary population inversion and gain of the system.

Figure 5 shows the population difference $\Delta n = (n_2 - n_1)$ obtained from rate equations as a function of Tb (or Eu) concentration for several pumping rates Rp = 10, 50 and 80 s⁻¹. The ${}^{3}\text{H}_{6} \rightarrow {}^{3}\text{H}_{4}$ absorption cross-section of Tm³⁺ at 792 nm used in the calculation was equal to $\sigma_{12} = 7 \times 10^{-21}$ cm². Fig. 5 shows Δn positive for Tm:Tb and Tm:Eu GLKZ with maximum inversion attained for 0.2 % of Tb (or 0.4 mol % for Eu), according to our computational simulation.

Figure 5. This figure shows the population difference $\Delta n = (n_2 - n_1)$ obtained from rate equations as a function of Tb and Eu concentrations for several pumping rates Rp = 10, 50 and 80 s⁻¹. These pumping rates are consistent the following pumping intensities I_P equals to 358, 1430 and 2860 W/cm², respectively, considering that the absorption cross-section of Tm³⁺ at 792 nm is equal to $\sigma_{I2} = 7 \times 10^{-21}$ cm².

Figure 6 shows the population difference Δn (given in ions/cm³) obtained from the numerical solutions for the steady state regime as a function of the (CW) laser pumping intensity at 792nm for Tm(0.1) and Tm(0.1):Tb(0.2):GLKZ glasses. Open circles of Fig. 6(a) exhibits the maximum Δn got if one solves the rate equation system taking W_2 transfer rate equal to zero for comparison. Fig. 6(b) shows that the population of the ³F₄ excited state of Tm³⁺ is higher than the ³H₄, the upper excited state in Tm (0.1):GLKZ.

Figure 6. This figure shows the population difference Δn obtained for the steady state regime as a function of the laser pumping intensity at 792nm. Tm(0.1) and Tm(0.1):Tb(0.2) codoped GLKZ and Tm(0.1):ZBLAN glasses were used. Open circles in Fig.6(a) exhibits the maximum Δn got if the W_2 transfer rate would be taken as zero in the rate equations, for comparison. Fig. 6(b) shows that the population of the ${}^{3}F_{4}$ excited state of Tm³⁺ is higher than the ${}^{3}H_{4}$, the upper excited state in Tm(0.1):GLKZ.

4.2 The linear gain coefficient g(cm⁻¹)

If a small volume of (Tm:Tb) doped germanate glass is considered be uniformly excited by a diode laser through a small length depth z with an intensity I_P (W/cm²) at 792 nm, it might be able to accumulate amplification potential for 1470 nm laser radiation resonant with the ${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{F}_{4}$ transition (Tm³⁺) for Tm and (Tm:Tb) codoped systems. When the probe laser beam (1470 nm) of intensity I_0 (W/cm²) passes through the excited cylinder volume in the z direction, it will be amplified or absorbed depending on Δn value is positive or negative according to Eq. (10).

$$I = I_0 \left(e^{-\sigma_{abs} n_1 N_0 z} \right) \left(e^{\sigma_{emis} n_2 N_0 z} \right) = I_0 e^{\sigma_{emis} (\Delta n) z}$$
(10)

considering that $\sigma_{abs} \sim \sigma_{emiss} = \sigma (6 \times 10^{-22} \text{ cm}^2)$ and z the gain length. Using the Tm concentration of 0.1 mol% and the glass density of 3.95 g/cm³ of GLKZ, we calculate N_0 equals to 2.53 x 10^{19} ions of Tm³⁺ per cubic centimeters. Eq. (10) shows that the probe laser beam will be absorbed or amplified if Δn would be negative or positive, respectively. Δn positive means that the ³H₄ excited state population exceeds the ³F₄ state population when the system gets a steady state

regime. The linear gain of the medium $g(cm^{-1})$ is estimated by the difference between the stimulation coefficient $\beta(cm^{-1})$ with the absorption coefficient $\alpha(cm^{-1})$ as follows

$$g = \beta - \alpha = \sigma_{emis} n_2 - \sigma_{abs} n_1 \approx \sigma \Delta n \tag{11}$$

The linear gain coefficient is proportional to Δn . If Δn is positive the probe intensity at 1470 nm will be amplified, otherwise it will be attenuated. Contrary to the behavior of Tm(0.1):GLKZ, ZBLAN glass already exhibits small amplification effect for 1470 nm probe beam when doped with Tm(0.1 mol %), as seen in Fig. 6(a).

5. CONCLUSIONS

In this work, we investigated the amplification properties of the germanate glasses operating for 1470 nm wavelength. Despite the lower absorption coefficient produced by the use of low Tm concentration (0.1 mol %) to minimize the cross-relaxation effect on ${}^{3}H_{4}$ luminescent level, the Tb codoped GLKZ glass showed capability for laser radiation amplification in the S-band because $\beta > \alpha$. Best Tb³⁺ concentration was found be in the order of 0.2 mol % and 0.4 mol % in the case of Tm:Eu. Our result showed that Tm(0.1):Tb(0.2):GLKZ has an amplification coefficient about 18 times higher than one estimate for Tm(0.1):ZBLAN glass for an typical intensity of 2 KW/cm². On the other hand, the single doped Tm:GLKZ might exhibit an attenuation of a laser radiation of 1470 nm because it was observed that $\beta < \alpha$. Tb³⁺ ion works better than Eu³⁺ as deactivator of the ${}^{3}F_{4}$ lowest excited level of Tm³⁺ doped GLKZ glass. The amplification gain of (Tm:Tb) and (Tm:Eu) germanate glasses justifies the use of this material in the development of Tm based optical amplifiers to operate in S-band for telecommunication applications.

Acknowledgments

The authors thank financial support from FAPESP (Grants N⁰ 1995/4166-0 and 2000/10986-0) and CNPq.

References

[1] E. R. Taylor, L.N. Ng., N. P. Sessions, and H. Buerger, J. Appl. Phys. 92, (2002) 112.

- [2] J. H. Song, J. Heo, S. H. Park, J. Appl. Phys. 97 (2005) 083542.
- [3] R. M. Percival, D. Szebesta, J. R. Willians, Electron. Lett. 30(13) (1994) 1057.

[4] L. A. Bueno, A. S. L. Gomes, Y. Messaddeq, C.V. Santilli, J. Dexpert-Ghys, S. J. L. Ribeiro, J. Non-Cryst. Solids 351 (2005) 1743.

- [5] A. I. Burshtein, Sov. JETP Phys. 35(5) (1972) 885.
- [6] M. Inokuti and F. Hirayama, J. Chem. Phys. 43 (1965) 1978.
- [7] L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, Y. Messaddeq, J. Appl. Phys. 95(10) (2004) 5451.