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Abstract — An application to one-dimensional com-
pressible flows of a general Bond-Graph approach 
for Computational Fluid Dynamics (BG-CFD), de-
veloped in previous papers by the authors, is pre-
sented. The shock-tube problem is modeled and sim-
ulated by this novel approach, and the results are 
compared against the av-ailable analytical solution. 
The numerical simulation shows that, even with the 
simple shape and weight functions selected for this 
case, the BG-CFD approach is able to deal with re-
ally complex non-linear flow problems in which all 
the thermodynamic aspects are taken into account. 

Keywords: Bond Graphs, Computational Fluid 
Dynarnics, compressible flow, shock tube. 

I. NOMENCLATURE 

Sub or 

n, k 
m, n 
k, 1,n 

3,17, P 

volume, domain 
volumetric heat source 
interpolation function 
Gibbs free energy per unit mass 
density 
viscous stress tensor 
temperature (nodal) 
temperature 
dynamic viscosity 
Supraindices 
time indices 
spatial indices 
nodal indices 
pertaining to entropy, velocity, or density 
per unit volume 

C 
	specific heat 

Cav 
	artificial viscosity coefficient 

h 
	

enthalpy, also length of ID domain 
identity matrix 

Ice 

	

	coefficient of isothermal compressibility 
kinetic co-eneru per unit mass 
system inertia 
mass 
number of nodes, also time step index 
pressure 

R 	rate of deformation 
entropy 
specific entropy 
specific internal energy 
fluid velocity 
time 
weight function 
position 
coefficient of thermal expansion 
numerical parameter 
Kronecker delta, also Dirac's function 

At 
	

time step 
thermal conductivity' 
domain boundary  

II. INTRODUCTION 

In order to solve multidimensional problems with the 
aid of computer programs, it is important that these 
models can be implemented numerically. This task, 
main concern of the area of Computational Fluid Dy-
namics (CFD), is performed by systematically discretiz-
ing the continua, that is, by replacing the continuous 
variables by a combination of a finite set of nodal values 
and interpolating functions. The result is a (generally 
nonlinear) algebraic approximation, instead of the orig-
inal differential or integro-differential problem. 

The Bond-Graph formalism allows for a systematic 
approach for representing and analyzing dynamic sys-
tems [1]. Dynamic systems belonging to different fields 
of knowledge, like Electrodynamics, Solid Mechanics, 
Fluid Mechanics, etc., can be described in terms of a 
finite number of variables and basic elements. Bond-
Graph modeling procedures reported in the literature 
start from lumped-parameter systems; so integration in 
space and also assumptions related to the resolution 
scheme are made beforehand. 

In recent works [2][3], a theoretical development of a 
general Bond-Graph approach for CFD, which we shall 



call BG-CFD, was presented. Density, entropy per unit 
volume and velocity were used as discretized variables; 
in this way, time-dependent nodal values a,nd interpo-
lation functions were introduced to represent the flow 
field. Nodal vectors were defined as Bond-Graph state 
variables, namely mass, entropy and velocity. It was 
shown that the system total energy can be represented 
as a 3-port /C field. The conservation of lineax momen-
tum for the nodal velocity is represented at the inertial 
port, while mass and entropy conservation equations are 
represented at the capacitive ports. All kind of bound-
ary conditions are handled consistently and can be rep-
resented either as generalized modulated effort sources 
at the inertial port or modulated flow sources at the 
capacitive ports. 

In [41[51, the BG-CFD approach was successfully ap-
plied to one-dimensional convection-diffusion problems. 
The "upwind " nature of the fluid equations was natu-
rally handled through the definition of density and en-
tropy weight functions, which share the importance of 
different power terms among neighboring nodes. 

In a separate paper presented at this Conference [6], it 
is shown that the BG-CFD is a very general methodol-
ogy, which includes the well-known Control-Volume and 
Finite-Difference methods as particular cases. 

As far as the authors know, the first application of 
Bond Graphs to CFD problems appeared in 17], al-
though the formulation was restricted to prescribed 
shape functions and nodalization Besides, heat con-
duction (which leads to convection-diffusion problems) 
was not modeled. 

In this paper, the BG-CFD formalism is applied to 
one-dimensional compressible flows. The general theory 
is not repeated here, so the readers are encouraged to 
consult the references for further details. 

The rest of the paper is organized as follows. First, 
the general Bond-Graph equations for compressible 
flows with heat transfer are presented. The next sec-
tions are devoted to describe the numerical details of the 
discretization. Finally, numerical results for the shock-
tube problem are compared against analytical solutions. 

In the following, bold letters will be used to define 
first order tensors (e.g. V, pu). Column vectors asso-
ciated to nodal values will be denoted by single under-
scored plain or bold type (e.g. rn, S, V, (,o,„ etc.) while 
multidimensional matrices will be identired by double 
underscored plain type (e.g. /if, Op, etc.). Second or- 

der tensors will be denoted by bold, double underscored 
type (e.g. r, I). Einstein convention of summation over 
repeated in—cii-ces is not used. 

III. SYSTEM BOND GRAPH AND STATE EQUATIONS 

The general system Bond Graph is shown in Fig. 1. 
A modulated transformer with transformation matrix 
equal to the inertia matrix, Al, is connected to the in-
ertial port of the /C field, in order to bring the nodal 
velocities as generalized flow variables. 

At the 1-element with common nodal velocities, V, 
we add all the nodal vector forces; in this way, the effort 
balance represents the linear momentum conservation 
equation for the nodal velocity values. 

At the 0-element with common nodal kinetic coen-
ergy and Gibbs free energy per unit mass, respectively 
(Ilf K), we add all the nodal mass changes per unit 
time; in this way, the flow balance represents the mass 
conservation equations for the nodal mass values. 

At the 0-element with common nodal temperature, e, 
we add all the nodal entropy changes per unit time; in 
this way, the flow balance represents the thermal energy 
conservation equation for the nodal entropy values. 

The modulated transformers and the modulated gy-
rator connect power terms that appear in the balance 
equations corresponding to more than one /C port. 
Their coupling matrices are rectang,ular, setting a re-
striction in the allowable causalities. 

The system state equations can be readily obtained 
from inspection of the system Bond Graph: 

rh = 	F  — M(wr) + inc + rhp + 	(1) 

= m-' (FG + FT) — FD — F p — F K) (2) 

s'QF + 4r) + — 	 (3) 

Fig. 1. System Bond Graph 
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Modulated sources are needed to represent the dif-
ferent boundary conditions established in the problem 
jilr(wr), F.,r) a jid 4r),, 

) as well as to represent the vol- 

umetric sources rilwF and Sc2F. In Eq. (2), M is the 

system inertia matrix (symmetric and reg-ular), defined 

as 

	

= (M)rna Lp (pvni (pv,. an 
	

(4) 

The different terms in the system state equations (1) 
to (3) arise from integrations over the domain 5/ or the 
domain boundary Their definition follows. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

The continuous variablas p, V, and 5,, are respectively 
the density, the fluid velocity, and the entropy per unit 
volume; the potentials it, and are correspondingly 
the k-inetic coenergy and Gibbs free energy per unit mass 
and the temperature: t is the time, q is the heat flux, 

P is the pressure, G is the force per unit mass, r is the 
viscous stress tensor, cID is the volumetric heat source and 

h = -
1 

(u, + P) is the enthalpy per unit mass, where 

u„ is the internal ener,- per unit volume. 
The heat flux q, the pressure gradient, and the vis-

cous stress tensor T (for a Newtonian fluid under Stoke's 
hypothesis) can be-expressed in terms of the continuous  

variables as: 

	

q = --
)t 0 

[v,sv + -
1 (

—
a 

- sv) V pi 	(20) 
P cv 	P iso 

VP = 	-2- [Vs, + (-c-v- + •-1- - It-) V pl (21) 
p c, no 	a 8 pno 	p 

1- = p (VV +VVT) - •d2 is (N 7,V) I 	(22) 

where A is the thermal conductivity, c, is the constant 
volume specific heat, et is the coefficient of thermal ex-
pansion, ice is the coefficient of isothermal compressibil-
ity, and p is the fluid viscosity. 

With the introduction of appropriate (see [2]) nodal 
shape functions for density, velocity, and entropy, 
namely cpp, (pv, and (,o, we define nodal vectors of inte-
grated variables. The nodal vectors of integr, ated mass 
and entropy appearing in Eqs. (1) and (3) are: 

	

Ln-=Slo • P 	 (23) 

S = 	. s„ 	 (24) 

where the diagonal matrices np and Qs are 

Stp = 	= f cppk bk„ dít 	(25) 

L/ = (a9)1,, = f (Psi iSin 	 (26) 

where 8 is the Kronecker delta. 

The vectors of nodal potentials are: 

K (10 = op-1 [f 	df/1 

	

ri 
	 (27) 

E) 	rn) = 51,-1 . [f 	(,o8 d511 
	

(28) 

(S, m) = Dp-1 . [ fn (pp c15-21 
	

(29) 

For the sake of convenience, we also define the follow-
ing diagonal matrices, whose diagonal elements are the 
components of the vectors of nodal potentials 0, 
K: 

e =(e),„ = ei (sin 

and 

(30) 

= Olt 	5kn (31) 

K 	(K),„ = 	(5k,, (32) 

Appropriate v.-eight functions for density and entropy-, 
namely wp and w, are also required for the discretiza-
tion to share the different terms appearing in the mass 
and entropy port balances, eqs.(1) and (3), among the 
neighboring nodes. Note that weight functions for ve-
locity are not required. 
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Since: 

0 
6 (x + h) 

h 
- 2 3 6 (x) 

- Tz 
3 6 (x - h) 
0 

x < -h 
x = -h 
-h < x < 0 
x = 0 
0 < x < h 

= h 
x > h 

(36) 

n E 
— = s., 
az 	 az 

(37) 

IV. NUMERICAL MODEL FOR 1D PROBLEMS 

In this section we apply the formalism to one-
dimensional compressible flows. We start by defin-
ing ns = n, = nv equidistant nodes in the domain 
f2 = [0, h]. We chose the density, velocity, and entropy 
nodes to be coincident, although this is not required by 
the general formalism. Secondly, we define a particular 
set of interpolating and weight functions that we found 
are suitable for dealing with this type of flows Finally, 
using this set we obtain a complete numerical model of 
the problem. 

A. Entropy Shape and Weight Functions 

For an inner node (1 < / < np), we consider the 
following entropy shape and weight functions: 

o 
cpsz = 	1 

x <-4 
-4 <x < (33) 

o x > 

x < -h 
1 -I- 77° +0 -h < x < 0 

Ws1 = 1 
{ 

x =0 (34) 
1 - 	- 0 < x < h 

0 x > h 

In Eq. (33) and (34), x is a local coordinate -with 
origin at the entropy node as shown in Fig. 2. In Eq. 
(34), 8 is a local parameter, which must be optimized 
in order to satisfy a specified condition, regarding the 
acc-uracy of the numerical solution. The analysis for 
this optimization can be found in [4][5]. In this case, 
it is used to apply some "upwinding" to the resulting 
discretization. 

It is important to notice that, for the chosen shape 
function, the element St of the entropy vector can be 
thought as the entropy corresponding to a "control vol- 
ume" located at 	< x < 4. Besides, the shape func- 

tion is discontinuous at x = -4 and x = 	while (for 
;3 0 0) the weight function is discontinuous at x = -h, 
x = 0 and x h. Frorn Eqs. (33) and (34) we get: 

a(pi 	 h 
ax = 6 + - 6 (x -h 

- 2) 	
(35) 

where 5(x) is the Dirac's delta function.  

h 	 h 

Fig. 2. Shape and weight functions 

and talcing into account Eq. (35) we have, for -h < x < 
h: 

Bsz, 
— (= s. - z-i) 6 + -h) ax 	 2 

+(sv 1+1 - i) b 	- 

Boundary points are treated similarly, but considering 
only half of a control volume. 

B. Density Shape and Weight Functions 

For density, we chose the same shape and weight func-
tions than for entropy, except that upwinding is not ap-
plied. That is: 

(38) 

(Ppi(x) = Vsi(s) 	 (39) 

wpi(x) = ivs/ (43 = 0) 	 (40) 

Again, boundary points are treated similarly, but con-
sidering only half of a control volume. 

C. Velocity Shape Functions 

In this case, we chose for the velocity shape functions, 
a piecewise linear function coincident with the density 
weight functions, that is: 

cpv/(x) = wp/(x) 	 (41) 
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As in the previous cases, boundary points are treated 
by considering only half of a control volume. 

D. Numerical Model 

Introducing the so defined shape and weight func-
tions into the nodal mass and entropy rate vectors and 
into the nodal force vectors, and replacing the result-
ing terms in the system state equations (1-3), we are 
able to compute the time derivatives of the three inte-
grated nodal vectors in terms of the nodal values of the 
variables, that is: 

= 7±1(p, 	sv) 
	

(42) 

= 	22) 
	

(43) 

= 	s.) 
	

(44) 

It is worth noting that, for a the currently selected 
shape and weight functions, for given p,V and 3,, the 

vectors in and ,S can be computed element by element, 
while the vector V requires the inversion of the tridiag-
onal matrix M in order to be solved for. 

Discretizing time to a first order approximation, we 
get a (possibly non-linear) algebraic system of equations 
of the form: 

ma+1 = my. ± 	Th(pk, 	syk) 	(45) 

vn+1 = vn 	jr(pk, 	vk, svic) 	(46) 

Sn+1 = 	-I- At S(pk, 	Vk, st,k) 
	

(47) 

where the subscript n indicates past (known) values at 
the previous time step, n 1 indicates present (to be 
found) values, and k indicates any time in the interval 

[tn — tn+11. If k = n the time approximation is explicit, 
and the solution of the algebraic system is straightfor-
ward. In any other case, the time approximation is im-
plicit, and iteration is required inside each time step. 

V. TEST PROBLEM: THE SHOCK TUBE 

The numerical model has been validated against a 
one-dimensional shock-tube problem for which an ana-
lytical solution is known [8]. The problem is depicted 
in Figure 3. The tube of unit length and a cross section 
of 0.01 rn2, has been discretized into 100 equal sections, 
which means n,s = nv = np = 101 equally spaced nodes. 
No-flow and adiabatic boundary conditions were speci-
fied at both ends. The following fluid properties for air 
(taken from [7]) were used: 
▪ reference temperature Bo -= 273.0 K. 
. reference density po = 1.2955 kg rn-3. 
. constant viscosity p = 1.7153 x 10-5 Pa s. 
• constant volume specific heat 	= 718.0 .1 kg-1 

The domain is initially separated in two sections by a 
solid wall located at x = 0.5 m. The gas is at rest in both 
sections, and the density- and total entropy conditions 
are: 
. left section: p = po, S = 0.0 J K-1. 
. right section: p = pn/ 2, S = 4.4247 J K-1. 

At t = 0 the solid wall is ruptured, causing a shock 
wave that travels from left to right. 

Fig. 3. The Shock-Tube Problem. 

The algebraic system of equations was solved explic-
itly, with a time step of 1.3 x 10-5 8. As is usually 
suggested ([7],[9],[10D, an artificial viscosity pa was in-
troduced, in the following way: 

pp = te [1.0 Cat, 1 tr (R2)] 	(48) 
2 = 

where R is the rate of deformation tensor: 

-= 2 
R = - (VV VVT) 

1 	
(49) 

and Cat, is an artificial viscosity coefficient applied under 
compression deformation rates only: 

Cot, = 0 for tr(R2) > 0; Cap = 0.013332 otherwise. 
(50) 

A comparison between numerical and analytical solu-
tions, showing reasonable agreement, can be see_n in Fig-
ures 4 to 7. These results are comparable, although a bit 
more diffusive, to those obtained in [7] with a more re-
stricted approach. Although more work may be needed 
in the selection of weight and shape functions, the sim-
ple ones chosen in this work have shown to be adequate 
for dealing with a complex nonlinear problem involving 
all aspects of the thermodynamic of the flow. 

0 	01 	02 	03 	04 	05 	06 	07 	08 	09 
x(88 

Fig. 4. Dimensionless density' at t = 0.001 s. 

VI. CONCLUSIONS 

A general Bond Graph approach for Computa-
tional Fluid Dynamics (BG-CFD), developed in previ-
ous papers by the authors, has been applied to one-
dimensional compressible flow problems. Piecewise con-
stant shape functions and piecewise linear weight func-
tions were used for the density and the entropy, while 
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piecewise linear shape functions were used for the flow 
velocity. Upwinding was applied to the entropy equa-
tion through a velocity-dependent entropy weight func-
tion. The shock tube problem has been modeled and 
simulated, and the results have been compared against 
the av-ailable analytical solution. The numerical simula-
tion shows that, even with the simple shape and weight 
functions selected for this case, the BG-CFD approach 
is able to deal with really complex non-linear flow prob-
lems in which all the thermodynamic aspects are taken 
into account. The accuracy of the model may be surely 
increased in the future by selecting more complex shape 
and weight functions. 
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