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Abstract 
This paper presents a method for determining gamma-ray energies with a precision similar to that of the primary 

standards. The method consists of both an experimental procedure which employs Ge detectors, and the statistical treatment 

of data. An actual example with lSYGd p- decay illustrates its use. 

PACS: 29.30.K~; 29.40.Wk: 23.20.-g; 23.2O.L~; 07.05.Kf 

Keynmtls: Gumnu-ru>, etwyics; Ge detectors; Ener~qv calibrutiot~ 

1. Introduction lack of linearity of the ADC. and due to peak distortions 
caused by the simultaneous measurement of sources. 

The first Ge detectors that became available produced 
great advances in nuclear spectroscopy because of the sig- 
nificant resolution improvement over scintillator detectors, 
thus enabling the interpretation of very complex nuclear 
level schemes. The energy resolution also allowed a pre- 
cise determination of the peak location, and consequently 
of the gamma-ray energy. When the development of these 
detectors began, however, the gain and zero stability of the 
Analog-to-Digital Converters (ADC) and amplifiers were 
not good enough to assure high accuracy in the energy de- 
termination. Nowadays. with the improvement of electronic 
data acquisition systems, together with the computer ability 
to store and analyze many spectra, it is possible to deter- 
mine peak-channel numbers with a precision of one part in 

IO’. Thus, gamma-ray energies with a precision similar to 
that of the primary gamma-ray standards may be achieved 
with Ge detectors [ 11. 

It turned out that the data analysis was more complex 
than the usual procedure of fitting a single polynomial. It 
required all correlations between the data to be determined 
and taken into account both to calculate standard deviations, 
and to perform a chi-square test with the measured energies. 

2. Measuring gamma-ray energies - single spectrum 

-3.1. Culihrution 

We present in this paper an experimental method which 
uses Ge detectors to determine gamma-ray energies rela- 
tive to those from primary standards, with the precision and 
accuracy of the latter. The procedure described here takes 
into account both the restrictions imposed by the instruments 
and those from the method of analysis. We took into ac- 
count, under some assumptions, possible effects due to the 

Although electronic devices are currently very stable, 
still peak-channel numbers change with time much 
more than the standard deviation of the correspond- 
ing parameter, usually determined by the least-squares 
method [2]. Then, a convenient procedure to determine 
gamma-ray transition energies consists of a simulta- 
neous measurement of gamma-rays from the sample 
and from a calibration standard [3]. All the mathemat- 
ical and notational details of the least-squares method, 
used throughout this paper, are given in the appendix. 

The calibration data set can be represented by 

{(C,.E,), i= l,N}, 
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usual calibration function is the polynomial 

E(C)=a, +azC+“‘+a,#C”-‘. (1) 

Hence, the experimental data and the parameters are related 

b[;!?=[; 4 _:: ;;?I (;;!+(;J 

(]a) 

where e, is the error in E,. The equation can be written as 
follows: 

E=CAo +e, 

analogous to Eq. (A. 1). 

(lb) 

To obtain the least-squares estimate of the calibration 
function parameters 2, we must calculate the covariance 
matrix V, comprised of two independent terms, as follows: 

v = VE + V,, (2) 

where VE is the covariance matrix of the standard energies 
(it should not be diagonal [4]), and V,: is the covariance ma- 
trix of E. which results from the statistical fluctuations in 

the determination of peak-channel numbers. In the exam- 
ple of Section 5, we will assume V. to be diagonal, due 
to the lack of information about the covariances between 
gamma-ray energies in the calibration standard. However, 
as indicated below, the experimental procedure does take 
into account non-vanishing covariances, as they should be 
whenever known. 

The covariance matrix V,:, which takes into account the 
uncertainty in the peak-channel numbers, is given by (see 
Eq. (A. 10)) 

V = P&P'. (3) 

where Vc is the covariance matrix of the peak-channel num- 
bers, and P is a diagonal matrix with elements (Eq. (A. 11)) 

Pj = 2 (a - l)a,,C,“~? (4) 
,,=I 

since each energy depends only on the location of its corre- 
sponding peak in the spectrum. 

The calculation of both P and Vc, however, warrants some 
additional explanations. The parameters A are needed to 
calculate P, and therefore, also V. Thus, this is an iterative 
least-squares fit, despite the linearity of the calibration func- 
tion on the parameters A. Nevertheless, only the first-degree 
term of the fitted polynomial contributes appreciably to the 
matrix V,. and is easily determined with great precision. All 
that is needed to solve this problem is a preliminary calcula- 
tion to estimate the first degree coefficient of the polynomial. 

The diagonal elements of Vc have two components. The 
first one is the variance a:’ of the peak-channel numbers, 

determined from the least-squares fit of a Gaussian func- 
tion with exponential tail, plus a quadratic polynomial back- 
ground, and a step function [5]. The second component takes 
into account the effects of lack of linearity of the ADC, 
which adds an uncertainty to the peak-channel number. The 
differential non-linearity (a measure of the lack of linearity) 
is < 1% for the Wilkinson-type ADC used in the cxperi- 
ment described in Section 5. We calculate (Vc),,. subject to 
further verification (see Section 5 ), as follows: 

(Vc),, = fr;, Z #Ir:’ + 0.0033’. (5) 

assuming that the overall effect in the peak-channel num- 
ber (determined by the least-squares fit) corresponds just to 
an increase in its variance. The added dispersion of 0.0033 
channels is an empirical estimate, which changes the vati- 
antes only for peaks with high number of counts, where 
cr: is of the same order of magnitude (0.0033). The spec- 
tra should be measured for relatively short periods, in or- 
der to achieve a good fit (X*/d.f. z 1 ), which would enable 

us to use o:‘, as determined by the least-squares method. 
Only completely resolved peaks were used in this calibra- 
tion procedure. Consequently, the peak-channel numbers C, 
are statistically independent, that is, 

(Vc),, = 0 for i fj. 

For most practical cases. when the coefficients of E(C) of 
order greater than 1 are negligible, and peak-channel num- 
bers of gamma rays from the standards are uncorrelated, the 

covariance matrix (3) becomes 

(V ),, 2 5: q’, 62,. 

where 6,, is the Kronecker delta, and & is the fitted value 
for the first degree term of the function E(C). 

Summarizing, for gamma-ray energy calibrations, E is 

the vector formed by the gamma-ray energies, C is the de- 
sign matrix given by the peak-channel numbers of the fitted 
peaks (Eq. ( 1 a)), and the parameters can be calculated using 
Eq. (A.4) as shown below: 

A=(C’V’C))‘C’V’E, (6) 

where V is the covariance matrix constructed as shown 
above (Eqs. (2) (3) and (5)). The covariance matrix of A 
is given by Eq. (A.5) 

Vj = (C’V’C)_‘. (7) 

Since V depends on the fitted parameters, it has to be calcu- 
lated iteratively. The procedure, however, converges rapidly 
because & is easily determined with sufficient precision to 
give a good estimate of V. The variable 

$ = (E - CA)‘V-‘(E - CA) (8) 

has a chi-square distribution with N - I’ degrees of freedom 
and should be used as a test for the goodness of the fit. 
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2.2. Interpolatim related by 

Let us consider the calibration procedure described above. 
TheenergiesD=(DI,D~,...,D,,...D,)’ofasetofgamma 
rayswithpeakchannelnumbers~=(B~,B~,...,B,.....B,)f 
can be interpolated using 

D = Bi, (9) 

where B is a matrix similar to matrix C given by Eq. ( la), 
but built with the values B,. 

The covariance matrix of D is 

V, = BQBt + &JB, (10) 

or 

where VB is the covariance matrix of the peak-channel num- 
ber B. The first term on the right-hand side of Eq. ( IO), 
which corresponds to the covariance propagation from A to 
D, estimates the statistical fluctuation in the energies due 
to the uncertainties in the calibration parameters. The sec- 
ond term on the right-hand side corresponds to the variance 
propagation of the fitted peak-channel numbers into D, anal- 
ogous to Eqs. (3) and (5). 

and can be compared with Eqs. (la) and ( 1 b). 
The vector ErL’ is formed by the juxtaposition of vectors 

I?“. represented in a partitioned form in Eq. (1 la); CL’ 
is a matrix formed by the rectangular matrices C”‘. each 
one with a structure similar to that of matrix C in Eq. (la), 
and represented in partitioned form in Eq. ( 1 la); AtL1 is the 
vector formed by the juxtaposition of vectors A”‘. 

The covariance matrix VD is non-diagonal due to the 
common dependence of every energy on the same para- 
meters. This fact shows, as stated above, that the covariances 
between gamma-ray energies simultaneously measured do 
not vanish. These covariances must be taken into account in 
the calibration procedures. in statistical tests, and, of course, 
for the propagation of variances. 

The covariance matrix VCL’ of E’L’, given below, is a 
generalization of Eq. (2): 

V’L’ = v?L) + 

i “. I> 

(12) 

0 v,!” 

where y,“’ is given by Eq. (3) and the elements of VF) are 

3. Measuring gamma-ray energies - many spectra 

3.1. Calibrution 

A measurement of a sample source using a single calibra- 
tion standard usually does not give enough precision for a 
large energy range. Mixing many calibration sources is not 
a solution because one obtains a very complex spectrum. 
Therefore, we propose to measure several spectra, each one 
with one calibration standard and the sample source, and to 
determine the energies as averages of the interpolated values 
in the various spectra. This procedure has the advantage of 
reducing any systematic error produced in a peak-channel 
number by distortions due to a specific calibration standard, 
since each combination sample source -calibration standard 
will have a different spectrum shape. 

(V,‘L)),k=COV(E,,E~). (13) 

It should be noticed that cov(E,, & ) = 0; if E, and Ek refer 
to the same gamma-ray calibration energy E, irrespective 
of whether they were measured in the same or in different 
measurements; otherwise, cov( E,, Ek ) = 0. cE is the standard 
deviation of the gamma-ray energy E. 

The fitted parameter AfL’ and their covariance matrix 

Vj,L,, are given by Eqs. (A.4) and (A.5), replacing X by 

C’“. Y by E’L’. and V by VCL’. The chi-square test can be 
performed by using the variable l’ defined in Eq. (A.6), and 
the same substitution mentioned above. Such x2 variable 
obeys a chi-square distribution with a number of degrees of 
freedom equal to the difference between the number of data 
points in E’L’ and the number of fitted parameters in AtL’. 

Generalizing the results from Section 2 to the measure- 
ment ofseveral spectra, we define E”‘=(E~“.E~“, .l&i’)’ 
as the gamma-ray energies used to calibrate the detector sys- 
tem in the ith measurement, (Cl”. Ci”. , (I’,+$,’ )’ the respec- 

tive fitted peak-channel numbers, and A”’ = (a\“,a’,“, . 
al.:‘)’ the parameters of the calibration curve in the same 
spectrum, where i = 1.2, _, 1 refer to the I different 
spectra. The experimental data and the parameters are 

3.2. Intrrpohtion 

The interpolated energies are given by 

(lla) 

(1 lb) 

v, 
iI1 0 
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or 

D’L’ = B’f’ J’L’, (14b) 

DtL’ is the vector whose elements are the energies deter- 
mined from all the measurements, and BCL’ is a matrix which 
contains the appropriate powers of the peak-channel num- 
bers. Using Eq. (IO), the covariance matrix of the fitted en- 

ergies becomes 

V,,, , = B’L’y,L,(B’L’y + 

i 

(a;)2v,iI, 0 

0 (a:)ZVBIII 1. 

(15) 

Since D”’ contains several fitted energies corresponding to 
the same transition, it is necessary to average their values 
for each transition. Let us call D the vector containing each 
energy transition once. The final step in the analysis can be 
accomplished by using the least-squares method with the 
appropriate design matrix X given by 

2( D”’ )i 
(X)1,, = i7(D)’ 

)I 
(16) 

where the partial derivative is equal to 1 if ( DcL’ ), and (D),, 
refer to the same transition, and equal to 0 otherwise. The 

estimate of the energies, given by Eq. (A.4), is 

D = (X’(V,,, i)-IX)-‘X’(V,,,,)-’ DcL’, (17) 

with covariance matrix VD, calculated by using Eq. (A.5 ), as 

VD=(X’(VD,,,)~‘X)-‘. (18) 

The variable 

x’=(D - X. D’L’)‘(VD,~i)-‘(D -X. DcL’) (19) 

has a chi-square distribution with a number of degrees of 
freedom equal to the difference between the number of data 

points in DtL’ and the fitted energies in D. 

4. Level energies 

When the gamma-ray energies given by D and its covari- 
ante matrix VD are known, it is possible to determine the 
level energies by the least-squares method. Firstly, it is nec- 
essary to define a transition energy vector D’ that is equal 
to D plus the recoil energies. The covariance matrix of D’ 
is well approximated by the covariance matrix of D, since 
the variances of the recoil energies are negligibly small. To 
establish the relation between transition and level energies, 
let us call G,, the @h level energy. Then. each gamma-ray 
energy may be given by 

(D’ ), = G,, - G,, (2.0) 

ab c ab c ab c ab c 

a - Acquisition for cabbration: 13’Ba + “‘Gd sources (- 20 minutes). 

b - Acquisition for calibration: %I + ‘$‘Gd sources (- 20 mutes). 

c - Acquisition with ‘59Gd source (- 24 hours). 

Fig. 1. Spectra measurement time table for the study of the ‘“9Gd 

decay. 

The appropriate design matrix for the least-squares fit is 
calculated by 

?( D’ 1, (X’h, = i’(c),,’ (21) 

It is a matrix with elements equal to 1, - 1, or 0, and specific 
to each individual level scheme. 

The estimated level energies, their covariance matrix. and 
x2 may be calculated by Eqs. (A.4), (AS), and (A.6). re- 
spectively, substituting X, Y, V, and A by X’. Dr. VD, and G, 
respectively. The number of degrees of freedom is equal to 
the difference between the number of gamma-ray energies 
in D’ and the number of level energies in G. 

5. Application to ls9Gd decay 

The method described above was applied to the mea- 
surement of gamma-ray energies from ‘59Gd p-e decay [6]. 
In this section we describe with more detail the individual 
procedures. 

Following the procedure given in Section 3.1, we per- 
formed eight calibration measurements using standard 
sources of ‘33Ba (four spectra) and ls2Eu (four spectra) si- 
multaneously with the ‘59Gd sample. The aim of this study 
was to detect weak gamma rays from ‘59Gd BP decay. To 
obtain enough counting statistics, four spectra of 24 h each 
were taken with the ““Gd source alone. Fig. I shows how 
the experiment was scheduled. 

A least-squares fit to a second degree polynomial cali- 
bration function was performed as described in Section 3.1. 

The final results were the vector kCL’ and the corresponding 
covariance matrix V’“‘. The gamma-ray energies of ‘j3Ba 

and ‘Q ELI, from 53 to 1112 keV, were taken from the tables 
of Ref. [7], and not corrected for the current values of the 
fundamental constants. The 964 keV transition of Is2 Eu was 
discarded due to a disagreement in the energy values be- 
tween various references [S]. The reduced chi-square value 
of the fit was 1 .lO, with 68 degrees of freedom. 

The energies of the most prominent and well resolved 
full energy peaks from ls9Gd p- decay were interpolated 
using the procedure given in Section 3.2. Their values are 
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Table I 

Interpolated 15’Gd gamma-ray energies (in keV) from spectra calibrated with various standards, and respective average values. Energies 

not used for averaging are labeled “nu” 

1st calibration 2nd calibration 3rd calibration 4th calibration 

‘“‘Ba std.” 15’Eu std. lx3 Ba std.’ “‘Eu std. 13)Ba std.” “‘ELI std. ‘33Ba std.a 15’Eu std. Average 

58.004 (3) 58.004 (4) 57.999 (3) 58.001 (4) 57.999 (3) 57.997 (4) 57.995 (6) 58.003 (6) 58.0000 (15) 

79.485 (20) nu 79.508 (14) nu 79.519 (14) 11” 79.62 (5) nu 79.511 (9) 

226.039 (6) 226.043 (6 ) 226.044 (4) 226.038 (4) 226.042 (4) 726.036 (4) 226.050 (IO) 226.039 (8) 226.0412 (17) 

290.30 (3) nu 290.253 ( I8 ) nu 290.298 (18) nu 290.31 (4) nu 290.282 ( I I ) 
305.550 (18) 305.569 (14) 305.566 (I I ) 305.552 (8) 305.559 ( I I ) 305.554 (9) 305.56 (3) 305.55 (3) 305.557 (4) 

348.278 (8) 348.287 (6) 348.280 (5) 348.280 (4) 348.283 (5) 348.278 (4) 348.268 (12) 348.273 (9) 348.2791 (21) 

363.5437 (25) 363.5420 (20) 363.5435 (24) 363.5466 (20) 363.5426 (24) 363.5450 (20) 363.5426 (24) 363.5431 (21) 363.5429 (IO) 

“” 559.63 (3) nu 559.64 (3) nu 559.663 (25) ,111 559.68 (4) 559.634 ( 12) 

580.82 (3) 580.798 (24) 580.808 (16) 580.845 (22) 580.809 (17) 580.835 (22) 580.80 (6) 580.80 (3) 580.809 (7) 

617.49 (14) 617.57 (5) 617.60 (6) 617.65 (5) 617.64 (4) 617.62 (4) 617.56 (14) 617.68 (6) 617.603 (18) 

nu 854.94 (13) 1,U 855.00 (IO) nu 855.22 (II) nu 855.14 (10) 855.02 (5) 

a Using a ‘33Ba standard plus the gamma-ray line of 842 keV from ‘Z’mEu present as a contaminant in the 15”Gd sample. 

shown on the ninth column of Table I. The following re- 
marks about the partial results of the interpolated energies 
for each calibration spectrum are necessary for a better un- 
derstanding of the procedure. These energies are presented 
in Table 1, columns 1-8. Notice that the acquisition of sev- 
eral independent spectra using the same calibration source 
reduces the standard deviations. For each calibration spec- 
trum the standard deviations of the interpolated energies are 
largely independent of the specific spectrum and they fall 
in the range 2.5 eV (e.g.. 58 and 364 keV gamma rays) to 
100 eV (e.g. 855 keV gamma ray). After averaging, the de- 
viations become even smaller. Neglecting covariance effects. 
one would expect the standard deviation of the average to 
be equal to that obtained in the single calibration spectrum 
divided by \/s. for those peaks that are present in all the 
spectra (like the 58 and 364 keV gamma rays). For peaks 
that appear in four spectra only (e.g., 855 keV gamma ray) 
one would expect a reduction of 0.5 (i.e. I /A) in the stan- 
dard deviation value for a single spectrum. The precision 
of the average values are in agreement with this argument 
( I .0-l .5 eV for 58 and 364 keV gamma rays. and 50 eV for 
the 855 keV gamma ray). This argument breaks down only 
when the uncertainties in the primary standards are larger 
than those in the interpolated energies. 

A gamma-ray spectrum with high counting statistics of 
the ““Gd source was obtained by summing four individual 
spectra. These spectra first were gain matched, then added 
up by using the method described in Ref. [9]. The energy 
calibration for this combined spectrum was performed ac- 
cording to the procedure described in Section 2, using as cal- 
ibration energies the I 1 previously interpolated energies of 
the lSyGd source. A second degree polynomial fit produced 
a reduced chi-square value of 0.86, with 9 degrees of free- 
dom. The final energies and covariances of all gamma-ray 
transitions following the ls9Gd p-- decay were obtained by 
employing the method described in Section 2. The energies 

of the excited states of “‘Tb, daughter of 15’Gd. were eval- 
uated by applying the procedure given in Section 4, which 

resulted in a reduced chi-square value of 0.92, with I I de- 
grees of freedom. 

The striking sensitivity of the level energy fit to the 
gamma-ray energies and their covariances is remarkable. 
Due to the cascade-crossover constraints, implicit in the 
model given by the set of Eqs. (20), the reduced chi-square 
value most likely will not fall within the acceptance region 
if the gamma-ray energies and their covariances have incor- 
rect values. This also occurs when there is a misplacement 
of a gamma-ray transition. Two examples, which illustrate 
the sensitivity of the method, are shown in Table 2. The first 
and second columns contain the final deduced gamma-ray 
energies for lX9Gd p- decay, and the respective absolute 
residues relative to the standard deviations. respectively. 
The third and fourth columns show the same information, 
but the corrections given by Eq. (5) were not included. In 
this case the high chi-square value suggests an underesti- 
mation of the deviations. When the ADC lack of linearity 
effects were taken into account. the relative residues of the 
gamma-ray energies (given with a precision of about I eV) 
became smaller. The fifth column shows an example where 
a misplacement of a 480 keV transition in the level scheme 
between levels with energies of 617.63 and 137.51 keV 

became apparent by its large relative residue (see Ref. [6] 
for more details about the level scheme). We stress that 
the conclusions deduced from these results are meaningful 
only if the covariances are used in the calculations. 

6. Conclusions 

The experimental method for measuring gamma-ray 
energies using Ge detectors described here may produce 
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Table 2 

Gamma-ray energies and absolute residues of the transitions assigned to ‘59Gd !_- decay calculated with different assumptions about the 

ADC’s lack of linearity, and the placement of the 480 keV transition in the level scheme. The absolute residue is calculated by the absolute 

value of (EcyP - Ecalc )/oenp, where Ecxp and oexp are the interpolated gamma-ray energy and its standard deviation, respectively, and 

E talc = E, - Ef is the energy difference between the two fitted levels, corrected for the recoil of the nucleus. The absolute residues presented 

in the fifth column were catculated using the energy values of the first column 

Including ADC’s non-linearities (eq. (I 7)) Without ADC’s non-linearities 

Erxp(oexp ). keV Absolute residuea &&G,,), keV Absolute residuea 

Including the 480 keV transition 

Absolute residue” 

58.0000 (22) 1.7 57.9999 ( 15) 2.8 I.7 

79.513 (3) I .4 79.5132 (18) 2.0 I .4 

137.515 (5) I .8 137.515 (4) 2.1 1.8 

2 IO.783 (3) I.8 210.7828 (24) 2.7 1.8 

226.0408 ( 18) I .O 226.0406 ( 11) 1.5 I .o 
237.341 (5) 0.2 237.341 (4) 0. I 0.2 

273.62 (12) 0.1 273.62 (12) 0.1 0.1 

274.163 (19) 0.7 274.163 (18) 0.7 0.7 

290.287 (3 ) 0.4 290.2864 ( 15) 0.3 0.4 

305.5495 (20) 0.7 305.5491 (II) 0.5 0.6 

348.2807 ( 18) 0.2 348.2806 (IO) I.1 0.2 

363.5430 ( IX) 0.1 363.5428 (IO) I.3 0.1 

479.84 (6) 479.84 (5) 4.7 

536.730 (12) 0.3 536.730 ( I I ) 0.6 0.3 

559.623 (6) 0.7 559.622 (5) 1.4 0.5 

580.808 (6) 0.8 580.808 (5) 1.5 0.7 

616.233 (18) 0.5 616.233 (17) 0.7 0.4 

617.615 (8) 0.9 617.615 (7) I.5 0.8 

674.26 (5) 0.5 674.26 (4) 0.4 0.5 

753.74 (6) 0. I 753.74 (6) 0.2 0.1 

854.947 (20) 0.7 854.945 19) ( 1 .o 0.7 

& = 0.92 
7 

I,, 
= I.7 .z 

/ -red 
= 2.7 

a The sum of the squared absolute residues is only a rough approximation of the chl-square value, since the energies EeyP are correlated. 

Eq. ( I9 1 should be used to calculate chi-square, giving the value quoted in the last line of the table. 

results with a precision comparable to that of the primary 
energy standards. The procedure is not difficult, but requires 
to perform several steps. The data analysis makes use of 
the least-squares technique, which produces results with 
minimum variance. 
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Appendix 

A. I. The bust-squares method in matrix notation 

Let us assume that a physical quantity can be represented 
by a function ,f( x. A), where x represents a vector with m in- 
dependent variables, and j‘ is a linear function of Y unknown 

parameters represented by the vector A. Let us also assume 
that the quantity was measured for N values of the indepen- 
dent variables, obtaining Y, = f’(x,. AU ) + E,, i = 1,2,. , N. 
where A0 is the true (and unknown) value of the parameter 
vector, and R, stands for the experimental error of I’,. The 
experimental data and the parameters are related by the fol- 
lowing equation: 

Y=XAo + E, (A.11 

where Y is a (N x 1) vector, AO is a (11 x 1) vector param- 
eter of true values, E is a (N x 1) vector of unknown er- 

rors, and X is the (N x v) design matrix. This matrix does 
not depend on Ao. and it contains all of the model depen- 
dence on x. The error E in this equation refers to the differ- 
ence between the experimental and the true value of a quan- 
tity. Only mathematical expectations of this error may be 
estimated. 

The following two assumptions are needed to calculate 
the least-squares estimate of Ao: the data are unbiased, 

(Cl) = 0. (A.2) 
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and the covariance matrix V. defined by 

c:, = (i:, F,), (A.3) 

is known. Expectation values are represented by ( ). 
Eq. (A.2) implies the absence of systematic errors in the 
observations. Eq. (A.3) defines, for i=j, the variance of 
Y,. and for i # j, the covariance between Y, and Y,. 

The least-squares estimate in matrix notation [IO, 1 I] is 

given by 

k = (x’v-‘x)p’x’v-’ Y. (A.4) 

where the superscript t indicates transposition. The covari- 
ante matrix of the estimates is given by 

vi =(xV’x,-’ (A.5) 

Eqs. (A.4) and (A.5 ) may also be obtained by minimizing 

the function 

p=c (,!A - fLLA))’ 
I 

q2 

for the case where the covariance matrix V is diagonal, i.e.. 
K, = a,‘, and K, = 0 for i #j. The equations given above are 
the simplest ones that include statistical correlations in the 
data. The following quantity 

xZ =( Y - XA)‘V_‘( Y - XA) (A.6) 

has a probability density function of chi-square with N - 11 
degrees of freedom if the joint probability density function 
of Y, is a N-dimensional Gaussian. This quantity should be 
used to assess the quality of the fit. 

The estimate given by Eq. (A.4) is unbiased, which fol- 
lows from its structure and the unbiasedness of the data ex- 
pressed by condition (A.2). Among the estimation fimctions 
A(y) linear in y, Eq. (A.4) gives the estimate with mini- 
mum variance. These optimum properties do not depend on 
the shape of the data probability density function. The proof 
of these properties may be found in Refs. [ 10.1 I]. 

A..?. Varimce propagution in matrix notation 

Let us assume that we have an experimental data set 
consisting of p random variables that define a vector 
a = (aI, 22.. , q)‘. We will represent by cov( x,,, x, ) the 
covariance between a,, and s(,-, and define cov(a,,, c+) = 
var(a,,). The true value of a,[ will be represented by 
~~~0, and the set of random variables defines the vector 

a0 = (aio, a20,. , ~~0.. , a,,~)‘. Let us consider now ran- 
dom variables zI and z,, which statistically depend on the 
random variables a,,, with values given by the functions 
=,(a) and z,(a), respectively. The true value of z,, 40, is 
approximately given by 

=,o g =,(ao), 

and the covariance between 2, and z, by 

(A.7) 

(A.8) 

The variances may be calculated by using the same expres- 
sion with i =j. 

Eq. (A.8) should be represented in a matrix form to conve- 
niently determine all the variances and covariances of a set of 
M random variables functions z =(z~(a),zz(a),. .,z~(a))‘. 
We define V, as the covariance matrix of the random vari- 

ables 

(V, hh = cov( ah. 

and covariance matrix between the functions 

The relation between the and z is 
given by 

v; ” zv,z’, (A.lO) 

z,(a) were linear functions of a, then Eqs. (A.7) and 
(A. 10) would be exact, and VZ would be independent of 
the vector ao. Since we use experimental values of V,, only 
approximate estimates of V= will be obtained. 
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