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   Abstract  Theoretical and experimental procedures to design
an pulse-forming network (PFN), have been developed in order
to drive a high power magnetron. The theoretical pulse-forming
network design approach is based on the Guillemin network
synthesis theory. The networks obtained using this approach
were numerically simulated to supply 9kV and 700ns pulses at
2kHz of pulse recurrence frequency to 31 ΩΩ load. An
experimental setup was assembled to verify the performance of a
PFN type–E designed and the obtained results of the experiment
are shown and discussed in this work.

   Index Terms  PFN, Guillemin network, microwave radar.

I. INTRODUCTION

   Pulsed microwave magnetrons require the use of pulse
generators that are capable of producing a train of pulses of
very sharp and short duration. The most important parameters
of pulse generators are pulse width, pulse power, average
power, pulse recurrence frequency (PRF), duty ratio, and
impedance level. There are essentially two classes of pulse
generators, namely, those in which the electric energy for the
pulse is storage in an electrostatic field in the amount 1/2CV2,
and those in which the energy is storage in a magnetic field in
the amount 1/2LI2. Additionally, the pulse generators can be
also divided in two types: those in which only a small fraction
of the stored electric energy is discharged into the load during
a pulse, called “hard-tube pulsers”, and those in which all of
the stored energy is discharged during each pulse, called
“line-type pulsers”. In this last, the energy-storage device is
essentially a lumped-constant transmission line. Since this
component of the line-type pulser serves not only as source of
the electric energy during the pulse, but also as the pulse-
shaping element, it became commonly known as pulse-
forming network (PFN) [1].
   The PFN in a line-type pulser consists of a set of inductors
and capacitors which may be put together in any one of a
number of possible configurations. The configuration chosen
for a particular purpose depends on the ease which the
network can be fabricated, as well as, on the specific pulser
characteristic desired. The values of the inductance and
capacitance elements in such a network can be calculated to
give an arbitrary pulse shape when the configuration, pulse
width, impedance level, and load characteristics are specified.
The theoretical basis for these calculations and the detailed
discussion of various networks are given in this paper [1]-[2].
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   In this work, it is reported some results of PFN performance
that was developed to be used in a driving magnetron circuit.
The PFN features are: 31Ω of impedance level, 2kHz of PRF,
0.7µs of pulse duration, and 11.4 nF of total energy-storage
capacitance.
   This paper is organized as follows. Section II describes the
PFN theory design. Section III introduces the procedures of
the network LC synthesis using the state variables approach.
Section IV presents the experimental set-up and results, and
conclusions are in Section V.

II. GUILLEMIN’S THEORY AND THE VOLTAGE-FED NETWORK

The technique used by Guillemin´s theory on design of the
PFN is based on the Fourier series expansion of the desired
output pulse. The trigonometric Fourier series for the
rectangular pulses, suitable to drive a magnetron contains
only odd terms, and it may be found by:
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where i(t) is the electric current pulse, v represent the terms
odd of the series, τ is the pulse duration and bv are the
coefficients which determine the amplitude of the pulse. Each
term of the Fourier series at (1) consists of a sinuidal wave at
each section of the PFN, and the electric current pulse can
also be written as:
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where, VN, Lv, and Cv denote the PFN voltage, the inductance
and the capacitance, respectively. These parameters may be
determined by:
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The resulting network is shown in Fig. 1, known as the
type-C Guillemin network, and consists of a series of resonant
LC elements connected in parallel [1].
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Fig. 1. PFN type-C derived by Fourier-series analysis.

For a four section network type-C, the function impedance
ZC(s) can be written as:
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where ai and bj are the polynomials coefficients.
The PFN type-C is inconvenient for practical use, because

the inductances have appreciable distributed capacitance and
capacitors have a wide range of values which makes the
manufacture difficult and expensive. Therefore, it is desirable
to devise equivalent networks that have different ranges of
values for capacitance and inductance. Theoretically, it is
possible to determine a large number of equivalent network
based on mathematical operations on the impedance and
admittance functions. For instance, using the Foster’s
theorem, the admittance function for network of Fig. 1 may
be written, by inspection, by means of:
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Inverting the quocient of the (6), the impedance function is:

 ( ) ( )

( )

( )∑ ∏

∏

= =

=

+

+

==
n

,3,1v

n

,3,1

2
v

n

,3,1v

2
vv

1sCLsC

1sCL

sY

1
sZ

K K

K

γ
γγ

.           (7)

The function Z(s) may then be expanded in partial fractions
about its poles, and an expression of the following form is
obtained as:
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For a four section network, Z(s) can be written as:
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where Kn are the residues of ZA(s), ωn are the resonance
frequencies, and A0 is a constant. Equation (9) represents the
impedance function for the network of Fig. 2 [1].

Fig. 2. PFN type-A derived by Foster’s theorem.

Thus, C0 is equal to the sum of the Cv’s shown Fig. 1, and L2n

is equal to inductance of all the Lv’s in parallel.
   One additional form of physically realizable network may
be found making continued-fraction expansion of the
reactance or admittance functions and identifying the
coefficients thus obtained with network elements. This
procedure is known as Cauer theorem and represents a ladder
network (10), resulting in the type-B Guillemin network,
shown in Fig. 3. This PFN correspond the transmission-line
equivalent [1]-[2]. The (10) means a series arms expressed as
impedances and the shunt arms as admittances [3]-[4].
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Fig. 3. PFN type-B derived by Cauer’s theorem.

   The essential PFN obtained by canonical network forms is
the type-D of the Guillemin shown in Fig. 4, which has equal
capacitances. In term of the manufacture, it is desirable
because the capacitors for high voltage networks are difficult
item to manufacture. The network of Fig. 1 is chosen to
derive the PFN type-D. The negative inductances are due, in
the shunt legs, to compensate the modified values of the
capacitances of the PFN type-C [1].

Fig. 4. PFN type-D having equal capacitances and negative inductances.

   The capacitances of Fig. 4 may be to obtained by ΣCN/n,
where CN is the total capacitance and n is the number of
sections of the PFN type-C, whereas the inductances are all
unknown. In order to obtained the network inductances the
following procedure is used. The admittance and impedance
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functions for PFN type-C are given by Foster´s theorem [1].
In the PFN type-D, L1s is subtracted from the Z(s) so that
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The series combination of L12 and C corresponds to a zero of
Z1(s) or to a pole of Y1(s)=1/Z1(s). Hence the admittance is:
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The poles of Y1(s) are given by s=±(1/L12C)1/2, then
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where Y2(s) is a remainder admittance function at ± s1. The
constants a1 and a2 are found by algebra [1], and Y1(s) to turn:
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The first term of the right-hand member of (14) must be the
admittance of L12 and C in series, so:

                     
2

1
2

12

2

12

2
12 ss

as2

CL

1
s

s
L

1

1CsL

sC

−
=

+
=

+
,            (15)

From (15) two equations for s1 and L12 can be obtained:
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where s1
2 is a root of Z(s)-L1s=0, and it is found by

eliminating L12 between (16a) and (16b), and is given by:
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Since C is known and s1
 is unknown, (17) determines s1, and

then:
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can be calculated. The above procedure to obtain L12 and L1,
can be repeated on the remainder function Z2(s)=1/Y2(s),

where Y2(s) is defined by (13) and then L2 and L23 are
determined. This procedure is repeated until all of the roots
are exhausted.
   The negative inductances, Fig. 4, can be realized physically
by use of the mutual inductance concept (Fig. 5) known as
network type-E of the Guillemin. This PFN is pratical
because all the inductances may be provided by single
winding coil, and the capacitors may be tapped in at proper
points. To find the values of inductances the PFN type-E, it is
used the procedure below [1]. For instance, for a PFN type-E
of the four sections:
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where LE1, LE2, LE3 and LE4 are inductances of the type-E.

Fig. 5. PFN type-E having equal capacitances and mutual-inductances.

Hence, the four canonical forms of PFN are equivalent to that
of Fig. 1, and they can be found by mathematical operations
on the Y(s) and Z(s) functions [1].

III. SOME PFN SYNTHESIS

   In order to investigate the characteristics of the PFN
voltage-fed, a computer code to simulate the behavoir of the
circuits shown in Figs. 1 to 5 was developed. The circuit
analysis was carried out using the state variables approach.
So, the state equations for the type-A, B, C, D and E PFNs,
written using the inductor currents and the capacitor voltages
as state vector elements, can be written as:
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where, A is an mm × constant matrix called the evolution
process matrix, )(tx

v
 is the circuit state vector, b is the control

circuit matrix, and w(t) the excitation scalar of circuit.
   The system was integrated using a fourth order Runge-
Kutta algorithm and the computer code was written in Turbo
Pascal 1.5 programming language [5]-[7]. The output of of
0.7µs and 11.4 nF PFN was connected to a 31Ω resistive load
RL and the output pulse waveforms was obtained for a
charging voltage of 9kV input.
   The output pulses obtained by simulation of four sections
LC of PFN type-A, B, C, D and E with a resistive load RL are
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shown in Figs. 6 to 10, respectively. The inductance and
capacitance values are listed in Tables I to V.

TABLE I. PFN TYPE-A: CAPACITORS IN nF AND INDUCTORS µH.

 Parameter Values
C0 11.4
C2 6.03
C4 7.07
C6 9.46
L2 2.07
L4 0.43
L6 0.13
L∞ 0.97

Load (RL) 31.0
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Fig. 6. Waveform pulse output of the type-A network with four-sections LC.

   Figs. 6 to 10 show that the PFN and the load are matched. It
may be seen that C0, from Table I, is equal to the sum of the
Cν’s shown in Table II, and that L∞ is equal to the inductance
of all the Lν’s in parallel. It may be also seen in Table III, that
each branch of the type-C PFN has an impedance Zν given by
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TABLE II. PFN TYPE-B: CAPACITORS IN nF AND INDUCTORS IN µH.

Parameter Values
C2’ 4.85
C4’ 2.52
C6’ 2.02
C8’ 1.99
L1’ 3.02
L3’ 2.12
L5’ 1.77
L7’ 0.97

Load (RL) 31.0
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Fig. 7. Waveform pulse output of the type-B network with four-sections LC.

TABLE III. PFN TYPE-C: CAPACITORS IN nF AND INDUCTORS IN µH.

Parameter Values
C1 9.14
C3 1.01
C5 0.36
C7 0.18
L1 5.42
L3 5.42
L5 5.42
L7 5.42

Load (RL) 31.0
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 Fig. 8. Waveform pulse output of the type-C network with four-sections LC.

TABLE IV. PFN TYPE-D: CAPACITORS IN nF AND INDUCTORS IN µH.

Parameter Values
L1 5.16
L2 5.41
L3 5.57
L4 5.85
L12 -0.94
L23 -0.53
L34 -0.58
C 2.85 (each)

Load (RL) 31.0
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Fig. 9. Waveform pulse output of the type-D network with four-sections LC.

TABLE V. PFN TYPE-E: CAPACITORS IN nF AND INDUCTORS IN µH.

Parameter Values
L1 6.1
L2 5.58
L3 5.81
L4 7.43

M12 0.3
M23 0.35
M34 0.3
C 2.85 (each)

Load (RL) 31.0
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Fig. 10. Waveform pulse output of the type-E network with four-sections LC.

   The results show that networks designed to simulate a
lossless transmission line have some limitations. This is
evident by overshoots near of the beginning of the pulse and
the oscillations during the pulse. This effect is due the first
four odd terms of a rectangular pulse Fouries series in the
synthesis procedure. But, it can be noted that there is a perfect
equivalent between all networks of the Guillemin even with
different values of capacitors and inductors.

IV. EXPERIMENTAL SET-UP AND RESULTS

   In order to verify the accuracy of the PFN simulated, an
experimental set-up shown in Fig. 14 was assembled. Its
equivalent circuit is shown in Fig. 11. It consists basically of
a voltage power supply that feeds a PFN type-E through a
charging reactor Lc and a fast blocking diode D. A hydrogen
thyratron Th model 5C22 was used to switch the PFN at 2kHz
of PRF. The output waveforms, voltage and currents pulses,
in a 31 Ω matched load and in a 62 Ω dismatched load are
shown in Fig. 12 and Fig. 13, respectively. These conditions
are relevant to magnetron modulator design. The waveforms
were recorded using an oscilloscope Tektronix TDS-210
connected to a computer.

Fig. 11. Experimental set-up.

Fig. 12. Output pulse waveform with a 31Ω load resistor.

   Fig. 12 shows a good agreement between the theoretical and
experimental results and the matching impedance can be
observed between the PFN type-E and the resistive load.
However, increasing load impedance introduces a series of
steps in the output waveform. These steps are all of the same
signal because the load impedance is larger than the PFN
impedance (Fig. 13).

Fig. 13. Output pulse waveform with a 62 Ω load resistor.

   The reflection coefficient ΓL [8] of the dismatching
observed in Fig. 13 between the PFN type-E and the resistive
load of the 62 Ω is given by:
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where ZPFN and ZLoad are impedances the PFN and load,
respectively.

Fig. 14. Experimental assembling used for PFN performance measurements.

V. CONCLUSIONS

   In this work the performance of five types of PFNs were
simulated and investigated. The theoretical investigation was
conducted using the Guillemin synthesis network theory and
the state variable approach. The resulting equation differential
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CC C C

RL

V



system was integrated using a fourth order Runge-Kutta
algorithms. A test circuit modulator based on the theoretical
of PFN was assembled and the results shown that it is suitable
to drive a high power magnetron.
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