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ABSTRACT

In order to simulate a real cascade performance in terms of the external and internal
flowrates and isotopic compositions, it is necessary to solve a system of equations composed of
the internal mass balances for the element (U) and for the desired isotopes. Considering the
separation of a binary isotopic mixture, for a cascade with n stages, we have a system of 4n

independent equations with 6n unknowns.

This kind of system has infinite solutions, unless we introduce practical or theoretical new
equations describing the centrifuge separation performance and/or use approximations in terms of

restrictions to the stages behavior.

Depending on the equations and/or restrictions we use, the simulation results can be quite

different.

In this paper, six different combinations between theoretical equations and stage
restrictions will be analyzed and compared using experimental results, in order to establish the
best mathematical model to be used in the theoretical simulation of areal cascade performance.
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I. INTRODUCTION

An ultracentrifuge is a separation device that, when
fed with a stream composed of an isotopic mixture,
produces two other streams: the product, enriched in the
isotopes with lower molecular weight, and the tails,
enriched in the isotopes with higher molecular weight.

The main characteristic of the ultracentrifugation
process is a high level of separation in only one stage, but
with low throughput.

In the design of a plant to produce enriched
uranium, the amount of material to be produced and the
isotopic compositions to be achieved are specified. In order
to obtain material with the specified isotopic compositions,
ultracentrifuges are connected in series arrangements,
composing separation stages. In order to produce the
amount of material specified, ultracentrifuges are
connected, in each stage, in paralel arrangements. This
complete arrangement is known as an isotopic separation
cascade. The separation stages are interconnected in such a
way that the feed stream of a generic stage i is composed of
the product stream of stage i-1 mixed with the tails stream
of stage i+1.

Normally, the design of an uranium enrichment
cascade to perform a given separation task, in terms of
product composition and quantity, is made minimizing the
operational costs. Considering the material to be processed
as a binary mixture, this results in a cascade profile as
similar as possible to the ideal one [1], with an established
tails composition.

The simulation of the cascade real behavior depends
on knowing the ultracentrifuge characteristic curves
relating the separative parameters and the flow and
pressure variables. Using these curves and the criteria of
maximizing the installed separative capacity for the given
product and tails compositions, we can obtain, depending
on how much the cascade profile is similar to theidea one,
a flow distribution in which some ultracentrifuges can
operate very close to the optimal point, but some others can
operate far from this same point.

However, using theoretical relations and/or
restrictions to the stages behavior, we can achieve results
similar to these ones without knowing the real curves cited
above. This level of information is sufficient for the
starting phase of a cascade design.



In this paper, six different kinds of approximation
possible to be used in the theoretical calculation of the
internal  flow and composition distributions will be
compared with experimental results, in order to establish
the best method for theoretical cascade simulation.

1. EQUATIONS AND RESTRICTIONS

To establish the flowrate and isotopic composition
of all the internal streams of a given cascade, we have to
solve a system composed of the following fundamental
equations:

1 - materia balance for the U compound in each
stage (n equations):

F=h+W, 1

where F;, P, and W, are, respectively, the feed, product and
tails flowrates;

2 - material balance for the desired isotope (*°U) in
each stage (n equations):

FiZi = P,y, + WiXi (2)

where z;, y; and x; are, respectively, the feed, product and
tails **U weight percentage;

3 - material balance for the U compound in the
streams mixing points (n equations):

Fi=W,
Fi=P.a+Wa+dis R,
I:n = Pn—l

fori=2,..,n-1 3

where F. is the cascade feed flowrate and d;s is equal to 1
for the feed stage, and O for the others;

4 - material balance for the desired isotope in the
streams mixing points (n equations):

F1z, = WoX,
Fzi = P.ayia + WisaXie + dis Feze , fori =2,...,n-1
I:nzn = Pn—lyn—l (4)

where z; is the 2°U weight percentage in the feed material.
Introducing in these equations the concepts of cut
(0i), heads separation factor (b;) and tails separation factor

(9):

qi = P/F ©)
bi = Rui/Ri = yi(1-z)/[z/(1-y3)] (6)
g = Ri/Rwi = z(1-x:)/[xi(1-z)] ()

where Ry, R, and R, are, respectively, the feed, product
and tails 2°U abundance ratios, they can be transformed
into the following relations:

P =gF, i=1,..,n ©)

Wi = (1- qi)Fi , i:].,..., n (9)
_ (9i- D[1+2z(b; - 1] -

q; = bg -1 , i=1,..,n (20)

Fl- (1- qg)Fz =0

'qi-lFi-l + Fi -(1- qi+1)Fi+1 = diyf Fc , i:2,...,n-1 (11)

'qn—an—l + I:n = O
Rz, - (1- 9,)RX%, =0
-0i-1R.1Yi-1 * Rz - (1- 0ic)RaaXiog - di¢ Rz =0,

i=2,...,n-1 (12
- qn- 1Fn-1yn-1 + Fnzn =0
y = DiH i=1,...n (13)
1+z(b; - 1)
S E— i=1,..,n (14)
gi-z(gi-1

The ideal cascade [1] is defined as the cascade
arrangement that minimizes the total internal flowrate and,
consequently, the power consumption. The ratio between
the calculated flowrate per stage and the optimal feed flow
rate of one ultracentrifuge (G) gives the number of
centrifuges in each stage. In this case, al the
ultracentrifuges operate in the same optima flow and
separation conditions, what means the same feed flowrate,
cut (symmetric), heads and tails separation factors (b=g),
that maximize the ultracentrifuge separative power,
defined as:

Ry,-1 - R -1
dU=[g="—1InR, + (1- q) Ry, 1InRW- _ZInR]*
R, +1 R, +1 R +1
«gr 20 (15)
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In the real case, however, it is not possible to
maintain al those variables in the optimal point, because
we have to round the calculated numbers of centrifuges per
stage to integer values and, at the same time, respect the
mass bal ance equations described above.

In order to simulate the real cascade behavior, we
can add to this system of eguations, based on the ided
cascade behavior, the following restrictions:

- constant cut for all the stages;

- symmetric separative behavior for all the stages (b=g);
- constant separation factor (a = b*g) for al the stages;
- constant separative power for all the stages.

The symmetric separative behavior of one
ultracentrifuge can be established using theoretical
relations to calculate the heads and tails separation factors.
The solution of the diffusion-convection equation in the
internal centrifuge field gives, for b and g, the following
equations [2]:



G +qG (16)
qG+016Xp[ (C1+9G)z,/ Cq
9= Crexp{[C,- (1- 9)G]z,/Cs} - (1- 9)G 17)
C-(@-96G

where z, and z; are related to the feed flowrate introduction
position, and C; and Cs are theoretical parameters that can
be written as functions of the centrifuge efficiency (e) and
its components [2] e, & and a:

C = J2Du prDw2a® |Fc = ele (18)
2RT 1- e 1- e
1
Cs = pa’r D(1+m?) = C§—— 19
5 = par D(1+m’) = Cg- o (19)

The three efficiency components can be calculated
assuming a theoretical internal flow profile [2]. An
alternative procedure to estimate these components without
the assumption of a theoretical internal flow profile is to
consider that, in the optimal separation conditions (G,
Aot Jot, dUqt OF €y), the component g reaches its maximum
value. So, in this point, for which the centrifuge operates
in symmetric process [1], the following equation is valid:

bo=
ele
b 1_ el +q0tGOt
C
é 0z,(1- € ’U
0,Ge b 1o expe- th | &S +q,6,- g
C g% C & ¢ H
(20)
O™
E/e' expich | /O (1- )G )u (1- 4o))G
g 1 e ot ot Q ot)Got
/e G0’
€c I}
1)
Aot = bot * Oot (22)

Using this relation, we can find the value of e for
which g reaches its maximum value. Obtaining g and e,
we can calculate C; and Cs for the optimal point. For the
cascade stages, this calculation procedure can be converted
into a theoretical restriction:

- constant values of C; and Cs for all the stages.

I11. THEORETICAL MODELS FOR CASCADE
SIMULATION

Combining the 7n mass balance relations and 2n of
the restrictions cited above, we can construct the different
mathematical models described below.

1 - Cascade with constant cut and constant separation
factor

In this model, it is assumed that all the stages work
with the optimal cut g, and the optimal separation factor
Aot

2 - Cascade with constant cut and constant C; and Cs
theoretical parameters

In this model, the cut is assumed to be g for al the
stages and the heads or the tails separation factors are
calculated using the theoretical relations.

3 - Cascade with symmetric stages and constant
separation factor

In this model we assume bq; = gyt = /@ for al the

stages.

4 - Cascade with symmetric stages and constant C; and
Cs parameters

In this model, we assume b = g for al the stages,
being b or g calculated using the theoretical relations.

5 - Cascade without restrictions of cut or symmetric
behavior and constant C; and Cs parameters

In this model, we assume that b and g obey the
theoretical relations for al the stages.

6 - Cascade with symmetric stages and constant
centrifuge efficiency

In this model, we assume that all the centrifuges
operate with the maximum separative power  dUy
(efficiency e,) and in the symmetric process (b = g).

IV. COMPARISON BETWEEN CALCULATED
VALUES AND EXPERIMENTAL RESULTS

Experimental results were obtained using four
different cascade configurations, with different number of
stages and different numbers of centrifuges per stage,
operating in their nominal point.

The internal  and externa flowrates and
compositions were calculated, for each cascade
configuration, using the six mathematical models
described above.

The percentua relative deviation between the
calculated values using each model and the experimental
results obtained in each cascade for the external variables
areregistered in Table 1.

As external variables, the product and tails
abundance ratios (R, and R,), the ratio between the



product and feed flowrates (P/F) and the separative

capacity (DU) are compared.

TABLE 1 - Percentual relative deviation between calculated values and experimental results.

Mathematical dR, drR, dP/F dbu
Model Cascade (%) (%) (%) (%)
1 1.5228 -1.1666 -1.7003 5.6400
2 3.2483 -1.7838 -1.5481 7.0963
3 -0.2841 0.4127 -0.5487 -1.9951
1 4 -11.7699 2.7833 8.0844 -11.5752
average -1.8207 0.0614 1.0718 -0.2085
st. deviation 6.7878 2.0367 4.7029 8.5627
confidence
interval -12.6200 £df 8.9786 -3.1791 £d£ 3.3019 -6.4104 £df 85540 | -13.8318 £df 13.4148
1 0.8549 0.1296 -1.7003 0.7669
2 1.1774 0.1049 -1.5481 0.3535
3 -0.1997 0.4127 -0.5487 -1.8450
2 4 -6.0826 -0.3976 8.0844 -1.0285
average -1.0625 0.0624 1.0718 -0.4383
st. deviation 3.3980 0.3370 4,7029 1.2120
confidence
interval -6.4687 £df 4.3438 -0.4737 £d£ 0.5985 -6.4104 £d£ 8.5541 -2.3665 £d£ 1.4900
1 1.5228 -1.1666 -1.7003 5.6035
2 3.1300 -1.7838 -1.3546 7.0073
3 -1.1280 0.4127 0.6859 -2.0806
3 4 -12.7361 2.5845 9.6661 -11.6479
average -2.3028 0.0117 1.8243 -0.2794
st. deviation 7.1737 1.9487 5.3328 8.5672
confidence
interval -13.7161 £d£ 9.1105 -3.0887 £df 3.1121 -6.6603 £d£ 10,3089 | -13.9098 £df 13.3510
1 0.5878 -0.1944 -1.1109 0.6834
2 0.0533 -0.3148 0.4838 0.2114
3 -1.1842 0.2162 0.9602 -1.8458
4 4 -1.0980 0.1988 0.8787 -0.9620
average -0.4103 -0.0236 0.3030 -0.4783
st. deviation 0.8723 0.2714 0.9652 1.1444
confidence
interval -1.7981 £d£ 0.9776 -0.4553 £d£ 0.4082 -1.2327 £0f 1.8387 -2.2991 £0f 1.3425
1 2.7251 1.7498 -6.1891 1.3991
2 6.6209 1.7838 -10.7886 0.9555
3 16.5087 2.3777 -20.0274 -1.5960
5 4 18.4453 2.3857 -20.7381 -1.4074
average 11.0750 2.0743 -14.4358 -0.1622
st. deviation 7.6028 0.3553 7.1250 1.5592
confidence
interval -1.0210 £d£ 23.1710 1.5001 £df 2.6395 -25.7717 £d£ -3.0999 -2.6429 £df 2.3185
1 0.7213 -0.1944 -1.2242 1.6180
2 0.6449 -0.5247 0.0968 1.4796
3 -0.3685 0.0197 0.4152 -0.9801
6 4 1.2297 -0.1988 -0.8787 0.9681
average 0.5569 -0.2246 -0.3987 0.7714
st. deviation 0.6693 0.2246 0.7776 1.2007
confidence
-0.5079 £d£ 1.6217 -0.5819 £d£ 0.1327 -1.6358 £d£ 0.8384 -1.1388 £d£ 2.6816

interval




With these deviation values, is calculated, for each
external variable in each different model, the confidence
interval for the real average deviation with 95% of
significance level [3].

As internal variables, the separation factors of all
stages were experimentally determined for one of the four
cascade arrangements (cascade 3). The obtained percentual
relative deviations as a function of the relative position of
the stages in the enriching and stripping sections of the
cascade are shown in Fig. 1.
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Figure 1. Internal Separation Factors Comparison

As it can be seen in the figure, for five methods
(models 1, 2, 3, 4 and 6) we have obtained very good
results, with asmall percentual relative deviations.

Treating the separation factor deviation of al the
stages as independent variables, we can calculate the
average value and the 95% confidence interval for the
average deviation considering the six different models. The
obtained values are shown in Table 2.

TABLE 2 - Average Vaues for Percentual Relative
Deviations of the Internal Separation Factors.

Model Average Standard Confidence Interval
Deviation | Deviation

1 0.3973 1.0604 -0.0854 £d£ 0.8800
2 0.2187 0.9574 -0.2171 £d£ 0.6545
3 0.3973 1.0604 -0.0854 £d£ 0.8800
4 0.2543 0.9218 -0.1653 £d£ 0.6739
5 1.2100 1.4135 0.5666 £d£ 1.8534
6 0.3467 0.9284 -0.0759 £d£ 0.7693

In order to assure that the internal separation factors
can really be treated as independent variables, an analysis
of residuals [3] was executed and the obtained residuals
(local vaue - average value) can be seenin Fig. 2.

This figure shows that there is no tendency in the
behavior of the analyzed variable in the cascade stages,
that permits to consider the stage separation factors as
independent variables.
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Figure 2. Residuals Analysis

V. CONCLUSIONS

As it can be seen in the tables and figures
shown, the best method for the theoretical simulation of
a real cascade behavior is the one for which al the
stages were considered as operating in symmetric
process and with the maximum separative power
(modée 6), followed by model 4. For this first model, we
have obtained the smallest percentua relative deviation
between the calculated and measured values for almost
al the variables compared. This approximation
introduces small errors to the model because of the
shape of the curve dU x G in a centrifuge. There is a
relatively large feed flowrate interval for which dU is
amost constant. This fact permits to fit, for each
cascade, an internal feed flowrate profile with different
values for each stage without being very far from the
real separative power value.
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