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1 INTRODUCTION 

In solid mechanics, the problem of Contact Stress Reconstruction (CSR), based on 
measurements from sensors located on the boundary or at interior points of the body, 
constitutes an IPP. This type of problem can be found, for example, in characterizing 
tractions at inaccessible regions of critical components in sensitive mechanical equipment, 
or characterizing tractions on a portion of the body embedded in a hazardous environment. 
Another application is the determination of tractions in a physical truncation. Such 
tractions may be needed in a partial mesh discretization of the body. In these cases, the 
internal data are generally not only more accurate, but easier to assess. Techniques like 
strain gages, photoelasticity, coating, and speckle interferometry, among others, are 
reliable experimental methods for the determination of deformation, strain and stress 
tensors at the boundary of or inside a body (Weathers et al. 1985). 

Schnur and Zabaras (1990) presented the boundary condition reconstruction for 
elastostatics application using the FEM in conjunction with spatial regularization.. In this 
paper, optimization approach was not employed and only magnitudes of simple traction 
distributions at a fix location on the surface of the body were determined. 

In this paper, the IPP of CSR is formulated as a constrained nonlinear optimization 
problem in a BEM framework. Using function specifications for the unknown contact 
stresses, the solution procedure adopted seeks to minimize the difference between the 
experimental data and the corresponding computed quantities. Geometric constrains 
forcing the solution to lies within a specific portion of the boundary of the body are also 
imposed. The design sensitivities required in the optimization procedure are obtained by 
the implicit differentiation (Saigal et al. 1989) of the BEM integral equations. Examples 
involving the determination of the magnitude, extent, and location of contact stresses are 
presented in this paper. Finally, it is important to notice that computational techniques for 
the solution of the IPP of CSR may provide an evaluation tool for identifying contact 
regions in neighboring objects, as well as hybrid experimental and numerical methods for 
the analyses of solids (Weathers et al. 1985, Balas et al. 1983). 
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2 DEFINITION OF THE PROBLEM 

Consider that in Fig.1 the external boundary r of the solid n got in touch with another 
body, and the contact traction v has its magnitude, extent, and location unknown . 

The reconstruction of m, along r and based on internal or external experimental data 
in terms of displacements, stresses, or 	r = r + r 
strains constitutes an IPP. In mathematical 

 1 	2 

notation, this can be expressed as 

6w(x)=—b;(x); 	tÍXES2 (1) 
aw(x)=Xs¡;En(x)+2µE,(x); 	HxES2 (2) 

E u (x)=TquÜ (x)+Uy;(x)); 	t%x ES2 (3) 

6u(y)ni(y) = ti; 	y  Er,  
i,l,(y)=lli; 	y E r= , 	and 

(4) 
(5) 

(.4 =P ; (xk); 	xk Er•,vr  xk E r (6) Fig.1-Unknown boundary traction 

where x and y are position vectors. Q ;; , ei;  , b;> u;> ti, are; stress, strain, body force, 
displacement, and traction, respectively. r, and u i  are prescribed tractions and 
displacements, respectively. 1v and are the Lamé's constants. s ;;  is the Kronecker's delta. 
cp. with (i = x,y) and (k = 1,2,3...m) are simulated experimental quantities along the direction 
'P' and at location "k," 	may be internal or external data in terms of displacements, 
stresses, or strains. 	is simulated from the solution obtained from a boundary element 
analysis with the actual contact stress applied. 

To solve the IPP of CSR the best-fit method using optimization technique is used. A 
residual function - difference between the model prediction and the measured data - is 
minimized. The residual function f(z) is the difference between 4,,  and the corresponding 
computed quantities w,r  multiplied by a weighting parameter w to enhance numerical 
sensitivity. {ii) is the data vector, and the mapping Az = {4 } corresponds to the computed 
quantity. {i} IS obtained in terms of the design variables which specify magnitude, extent, 
and location of the contact stress. The objective function to minimize is 

f(Z)  = WEE kg)*  — (P. )' 	(7) 

3 MINIMIZATION OF THE RESIDUAL 

The use of numerical methods in conjunction with digital computers has enabled structural 
engineers to solve a wide variety of complex problems. The CSR, based on observations 
around or inside the body, involves the determination of the magnitude, extent, and 
location of the contact stresses acting on r . The numerical procedure adopted requires the 
determination of a model vector zT={z,,z2...z„}  such that f(z) in Eq. (7) be a minimum. 
Suppose that the location of the contact stress is limited to a bounded set of locations on 
the boundary fl .c. . Constraints, C; (zi) 0, to prevent contact stress from lying out of the 
feasible region is adopted. To take C ; (zi) into account in the minimization process, the 
internal penalty function (inverse barrier function) method is used. Making i the penalty 
parameter, the new augmented objective function is 

F(4, 91)= f(z1)+s1 E EC; 1 (z;) 	(8) 
j=1 i=1 

There is a lot of methods for the minimization of F(z; ) = F(zi , st) . The variable metric 
method is considered to be a powerful optimization method (Reklaits et al. 1983). In this 
method, for a fix 81, F(z) is locally approximated, at any point z , by a Taylor's expansion 

F(z)-F 	
aF  

 (z)+E  (2)(z z)+ E 	 62F(2) (z 	+... (9) 
ì az, 	i.) aziz; 

In matrix notation and including terms up to the 2nd order, Eq. (9) can be rewritten as 
F(z) A+BZ T +izHZT 	(10) 
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where A is a constant, B is the gradient vector, and the matrix of the second order  

derivatives, H, is the Hessian of F(z.). From Eq. (10), the gradient of the F(z) is  

VF(z) = Hz- B . The variable metric methods iteratively build up a good approximation to  

It constructs, during the iterations (k -> x), a sequence of matrices A") that will  
converge to H-'. If the minimum of F(z,) is achieved in N finite number of iterations, then  

A") can be used to update z . Suppose Z gives the minimum of F( z;), then  
VFW). H z '  - B = O. At any iteration z (k) , H2 (k)  = VF(z(k)) - B. Subtracting this equation from  
the first one, and multiplying the resultant expression by the matrix H-', it yields  

	

z'-z(k) = -H-'[DF( z(k))] 	(11)  

The left-hand side of Eq. (11) represents a finite step to take the vector z (k)  towards the  
exact minimum z'. Subtracting Eq. (11) at z(k+1)  from the same equation at zoo gives  

	

z(k+1)- z(k) = - H -1 [VF(z(k+1)) - VF(z(k))j 	(12)  

In the variable metric method, the sequence A`'),Am,A`2>,...,  A("'' approaches H - ' in a finite  
number of iterations. In this paper, the recursive formulae from the BFGS (Reklaitis et al.  

1983) algorithm are applied to update el). Knowing that g"'  = OF(z") , 9 ) Az")  = Z"")  -z">  
and e g") = g(z"' )) - g(z" )) A"'° is updated as 

A")Az")A g")T A")  ega)e g")T 
Ac`> 	 +  	(13)  

e z")T A ") A g") 	Ag")T e z")  

Substituting in Eq. (12) H- ' for A"«°,  and calling s(z (k)) =S(k)  = A"">1vF(z""))-vF(z"))j then, if  
we start from an initial guess z (0), the update of z (k ) in search of the minimum in the  
direction of S (k)  can be wntten as 

	

z"")  = Z")  + a")  S(Z'  k)) 	(1 4 )  
where a(k)  is the step-length along S. In the sub-minimization process of finding a (k)  to  
minimize F(z) = F(z,91), given the initial guess z(°), the derivatives of F(z( 0)) and the search  
direction s (0) are calculated. Three values a(°)  < a(b)  < a(c)  corresponding to three points  

z(1) < z (b) < z( 0) in Eq. (14), along the path s( 0), are found. These points are such that 
F(z(")) > Rio)) < F(z (` . To ensure that the location of the vector z(k) lies inside the feasible  
domain r1  c r,, the step-length a(k)  is successively contracted by 10%, when necessary,  

until z (k) lies inside the feasible domain. With the three initial points a(° < a") < a4) , Brent's  
method (Gill et al. 1981) is applied to find the minimum of F(z) along s( 0) by approximating  
the function F(z) by a parabola fitted through - a"' •a") .a``>}. With F(') = F(z (')), F = F(z">), 
and F4). F( e) solving the inverse interpolation problem, the variable a(m) denoting the  

minimum of the interpolating parabola, is found as  

\alb)-a("))2[F(b)_F( ^ )1  ^a(b)_a(0))Z[F(b)_
F(e)]  

(m)  a(b) + 	 (15) 
(ob)  -  a (a))IF (b)  - F (1_ (a (b)  - a (c))

\
p[F (b)  F(8)]  

Eq. (15) fails if the points are collinear. Brent's method takes care of this situation by  
shifting to the Golden Section method (Gill et al. 1981). At a(m), F( z(m)) is evaluated.  
F(z`'>), F(z"'), and F(z``)) are compared with F( z(m)). The one with the most difference is 
replaced by F( z(m)). A new triple set of points is obtained. A parabola is fitted through this 
new set. The process is applied until the minimum of F(z), along S(k) , is found. With CO),  
BFGS updates A ('-'), s ('''), and z(k*" . If convergence has been achieved the program stops. 
If not, the next iteration begins with the updated values of A"">,  S(k+ ' ) , and z(k+ ' )  

4 BEM AND SENSITIVITIES  

The most widely used numerical techniques successfully applied to direct problems are the  
FEM and the BEM. A recent review of the literature indicates that the FEM has been  
systematically incorporated into numerical schemes for solving IPP (Bezerra 1993). During  
the last decade, though, the BEM has become an alternative and has emerged as a  
powerful tool for solving various complex problems. There are many advantages that make  
the BEM an attractive and competitive technique. BEM has some distictic advantages,  
especially for certain classes of linear problems over "domain" type techniques such as the  
FEM. In the BEM the dimensionality of the problem is reduced. 2D problems are reduced  
to line integrals. As a "meshless" method the BEM is well suited for problems involving  
continuous mesh updates. The contact stress reconstruction is an example of such  
problem. The extent and location of the contact stresses on r have to be found and for  
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that the mesh at the boundary has to be constantly updated. BEM technique makes the 
mesh update easier. The fundamental equation in the BEM is the Somigliana's identity. 
Omitting the body force, the Somigliana's identity can be written as 

	

ll' - r̂, u t+ Jr 
ll tj - r̂' t ,̂ tj -

J r,t'!t, 	( 16)  
¡¡ 

 

/ 	
with u; =c1 1c2S;j log R - (Y;Yj)/R 2 ) 	( 17) 

(c./ R2)[c4(nkY, n;Yk)+(c4 +( 2 Y,YO 1 R2)Yjnj] 	( 18)  
where u; = u; (1;,x), t;j  = t;(4,x), µ = E _ (2(1+ u)) is the shear modulus, E is the Young's modulus 
and u is the Poisson's ratio, c,=-1= (8nµ(1-u)), c2=3-4u, c 3 =-1+(4a(1-u)), and c4 =1-2u . 

The term Y,=xi+ í;, is the distance between the point load x; on the boundary and the field 
point 4,, R2  = Y; y,; and n ;  are the outward normals at boundary r . Similar to Eq. (16), the 
equation to determine the stresses can be written as 

au = J(r [E;,t tt - a;k u&] dr  

with u nk! =re k C > x)= (a3niY1/R 4)2a2gijYk+2v(& Yk+SijYk) - gYiYjYk/R
2 
 +(a3/R2) 

[ni(2vYiYk/R2 +a2Sjk)+nj(2vyiYk/R 2 +a2Sik)]+(a3/R 2)[nk(2 a2Y 1 Yj/R2  a4Sij)J
1  

l 	and a =a (,x)=(a,/R){az(S,Yi+S#Y, - NY,)/R+2Y,Y;Yr/ R'} 	(21)  
a, _ -c, , az = C4, a3 = µ /[2n(1 -  v)] , a4 =1- ay.  With the stresses, the strains can be obtained as 

eu(4)= au( )/( 2 µ) -2 Suau()/[2µ(2µ+ 3k)] 	(22)  
For the discretization of Eq.(16), F is approximated by piecewise elements. The geometry,  

	

displacements, and tractions at r, (a piece of F) in 	discrete coordinates are 

x;(4) _ ±h`(S)x;' ( 23 ), 	04) = h` g)1.4)  (24) and t,(4) = h` t'' 	(25) 

where ,q) are the Cartesian coordinates (x,y) defining the geometry; up is the nodal 
displacement; tr is the nodal traction. ,, , u», and t;o  are nodal coordinates, displacements 
and tractions, respectively, at the nodal point "i." h.?)  are quadratic interpolating functions 
in natural coordinate . Putting Eqs. (23), (24), and (25) into Eq. (16) and manipulating 
the resulting equation with modal „;».(u) in one side and i;on{r} on the other side, we get 

[F]{u}=[G]{T} 	(26),  

with Gp, _ ^1 , [u;1[ h]J4 	(27), 	and 	F„  = E f_,ttahlJg 	(28)  

where c„ and Foy  are the terms of the matrices [F] and [G], respectively. The indices "p" and  
"q" denote node and element, respectively; N e  is the total number of elements in the mesh.  

and pm  are the interaction coefficients relating node "q" .with all the nodes on the 
surface of the body. The system of Sq. (26) may be rearranged after all the prescribed 
boundary conditions (tarctions i and displacements ú) are imposed. The manipulation of 
Eq. (26) is done to transfer all the unknowns to the left-hand side and all the known 
quantities to the right-hand side, resulting in [A]{.)={b}. {,} is the vector of unknowns and  
{b) the vector of known boundary conditions multiplied by some other matrix resulting  

from the manipulation operations due to the application of the boundary conditions. Upon 
finding {v}, the displacements at any location can be found from Eq. (16). In the same way, 
applying the boundary values in the discretized form of Eq. (21), the stresses (and the 
strains by Eq. (22)) can be calculated. Minimizing Eq. (8) by the variable method requires 
the gradient of F( z,) = F(z,,st) with respect to ZT = {7,1,z2 z }.  

aF(z) aF(z,91) 	m 	2 	a(p. 
2w 	 ik 

L 
,R E 

j=1  

1 aC•(z) 
J  (29)  

ac 
= 	E 	E(Wik -(Vik) 

ôz 	k=,i=1 	 az C .1(z) ôz 

The Hessian matrix is approximated by the BFGS al orithm and for that the first-order 
derivatives of the function F(z,) in Eq.(29) is needed. In Eq. (29), a9,/ az are the  
sensitivities of displacements, strains, and stresses, depending on what experimental  

quantities are used in the data vector W. To find atp, l az the first derivatives of the  
boundary displacements and boundary tractions are needed. To accomplish this, the  

implicit differentiation of Eq. (26) with respect to the design variable, z, leads to  

[F]{u} ,Z +[F] , .(u)=[G]{T} ,z +[G]  z frl 	(30)  

(19)  

(20)  

Ito  
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Fig.3: Parabolic contact stress 
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Fig.2: Panel with contact stress 

with G,,,=Ef,`{[uii,Ih1J+(ui;Ih1J.J ( 31 ), and  F.,,=EJ_;{[tii.Ih]J+[ta[h1J,id 	(32)  
Ir., 	 kr  

The derivative of the kernels u , and t i , with respect to vector z are, respectively  

(33) 
uJ z=uÍj,z( , x)=c1[c2SiJR,z/R — (yi,zyj+yiyj,

(
z)/R2

YY

+2YiYjR,z / R3] 

and 
til z=t

ij z(E,x)=(c3c4/R2)(njYi,z+nj,zYi-niYJ,z-ni,zYJ)+(c3/R4 ^12y1YJ(Yk,znk-yknk,z)• 	
(34) 

+2(Yi,zYjYiYj,z)Yknk - ByiYjYknkRz /R, - (2c3/R3^c4(niYi - n¿Yi) - (c4Sik+(2yiYj)/R2)]R,z + 
 

where R , ,  = R —I Yk Yk,z , 	n2,2 = J -2 J,1x1,z+J i xl.z , and nn., = - J4J,.x2.,+J -1 xz.. •  
The singularities in G py  , and Fpq,, were studied by (Saigal et al. 1989). Knowing pi, and 

[F1, and manipulating Eq. (30) results [F]{u} F =[Gl{r} F + {r} with {r}=[G],{T}- [FL {u}. After  

applying the sensitivity boundary conditions in that equation one arrives to [, ► j{v) ={a}+{r},  
where {v} contains both the boundary displacement and boundary traction denvatives.  

With such derivatives, the displacement, stress, and strain sensitivities at any filed point,  

can be found through the derivatives of Eqs. (16), (19), and (22), respectively. The  

derivative of Eq. (16) needs the kernels' sensitivities in Eqs. (33) and (34). The stress  

sensitivity needs the strain and stress kernel derivatives as follows  

E ijk,z = E ¿jk,z(x)  = -4(a3n1,z Y1 / R4Xa3n1Y1, z  / R4Xa3n1 ,zY1R ,z  / R5)[2a26ijYk  

+2v(Sikyi+SjkYi) - SYiYjYk / R 2] +(a3nlY1 / R4 )[2 a26ijyk,z + 2v(Sijyj,z+ 8 ijYk,z)  
-(8 /R2 XYi,zYjYk+YiYj,zYk+YjYjYk,z+ 2 R,z YiYiYk/R) - (2 R,za3/R 3)  

[ni(2vyiYk/R2 +a2 8 jk)+nj(2vYiYk/R2 +a28 ik)]+(a3/R2  ni,z(2vyiyk/R2 +a2Sjk)  

+(2vni/R2)(Yj,zYk+YjYk z -2R zY¿Yk/R)+ni z(2vyjyk/R2 +a2Sjk)+(Zuni/R2 )  

(Yj,zYk +Y jYk, z -2R,zY¿Yk / R)] - (2 a3R,z / R3)['nk( 2 a2YiY j / R 2  - a4Sij)1+(a3 / R 2 )  

[nk,z(2 a2YiYj/R2- a4Sij)+(2a2nk/R2 )(Yi,zYj+Y¿Yj,z -2 R,zY¿Yj/R)1 	 (35)  

"ijk z=Qjk Z ( > x)= -(a1R,z/R 3)[a2(SikYj+SjkYi - SjjYk)+2 Y¿YjYk/R2]+(a1/R 2 )  

[a2R,z(SikYj+SjkYi -8 ijYk)/R+a2(8 jkYj z+SjkYi z - SijYk,z)/R+ 2 Yi,zYjYk/R 3  

+2 YiY j,zyk / R 3 +2Y¿Y  jyk,z/  R 3 +6R,zyiY jYk / R 3] (36)  

When strains are the measured quantities in the data vector, the strains sensitivities are 
needed in the minimization process. Knowing the stress sensitivities, the strain sensitivities 
can be obtained by deriving Eq.(22) w.r.t. vector z . 

5 NUMERICAL EXAMPLES 

In the examples, the experimental data vector w,„ will be stresses and strains, respectively, 
for the first and second example. w  was obtained from a priori direct BEM analysis with 
the actual boundary tractions on the structures. These tractions are the "exact" solution for 
the purposes of comparison of the accuracy of the present procedures. 
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Fig.6 Function contour 

A panel under parabolic tractions: The panel in Fig. 2 is considered to get in touch with 
another structure. The panel properties are: E = 18.6 x 106 psi, and v = 0.3. At 39 internal  
sensors (crosses at Fig. 2) the stresses along "x-y" direction is observed while the panel is  

under an "unknown" normal contact stress with parabolic distribution at its top edge. The  

location, Z, the span, W, and the peak magnitude, P, of the contact stress are unknown  

and desired to be reconstructed. The model vector is z  ={z.w.P}. The parabolic normal 
contact stress is a0)=(-oPa2+8Pza+Pw2-4Pz2)/w2 . "s" is the distance along the span of the parabola 
and (z-o3w) Sa5(z+o.5w). The initial guess for Z  was  z  ={SOm,75m,3OO Ia;} . The evolution of the 
missing traction distribution is shown in Fie. 3 & 4. The exact traction distribution is 
shown in bold line in that figure. As the missing contact stress varied in position and span 
length after each iteration, the mesh for the upper boundary edge was modified to 
accommodate such evolutions. The parameter 92 in Eq.(8) was varied during the analysis 
changing from a value of 105  at the beginning to zero at the end. The final solution was 
obtained in 26 iterations. Table 1 shows the final results obtained with no error in the data 
vector and also with 5% and 10% random error contaminating the data vector. 
A roller under normal and tangential stresses: The contact stresses acting on a roller at its 
interface with a workpiece are analyzed. The roller is in Fig. 5 and the material has 
E =1217N i nun' and v = 0.3. The region coming in contact with the workpiece was 
discretized with a finer mesh. The measurements were obtained at 25 internal locations 
identified by solid crosses at Fig. 5. The data vector in this case consists of strains read at 
25 internal locations. The contact region is characterized by the angle "y". The normal 
traction distribution is assumed to be symmetric and the tangential traction assumed 
antisymmetric. They are N(K) = Asin[Ky) and TN) ,  Bae3[(K - 0.5)3], respectively. A and B are  
amplitudes of the corresponding traction distribution. Fig. 6 shows the residual function to  

minimize and the region of the minimum can be identified. The parameters A, B, and y  
define the missing traction distributions and constitute the model vector Z. Starting with  

A = 55N / mm2  ,  B = 5N / mm 2  , and y =10° , the normal and tangential contact stress converges to the  

final solution after 18 iterations and are shown in Fig. 7 and 8, respectively.  
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TABLE 1: Panel with Parabolic Contact 
Stress - Numerical Results: 

Traction p , Span W, and Position Z 
DATA 

ERROR 
PARAMETER 

STANDARD 
DEVIATION pin w(IN) uN) 

n=0% a=o.00 1000.1 19.99 70.00 
n=5% al = 1.38 1001.1 19.97 71.11 

ã2 = 3.15 

ry =10 a i  = 2.76 1001.8 19.94 71.11 
a2 = 6.31 

Fig.8: Evolution of tangential contact 
stress 

6 CONCLUSIONS 

An optimization-based BEM formulation for the solution of the ill-posed problem of 
contact stress reconstruction has been presented. The approach to reconstruct contact 
stress is based on the minimization of the residual between "experimental" data at discrete 
points and the corresponding computed quantities. To keep the solution in feasible 
domains, constraint equations are imposed. The inverse penalty function was augmented 
to the objective function so that the constrained problem was transformed into an 
unconstrained one. The minimization is performed using a quasi-Newton method with 
implicit differentiation of the kernels of the BEM equations. Parabolic and sinusoidal stress 
distributions were assumed for the unknown contact stress. The magnitude, extent, and 
location of the unknown contact stresses were closely predicted demonstrating the validity 
of the approach to reconstruct stress from "experimental" data. A prime limitation of the 
approach is that the optimization procedure may converge to a local minimum. 

REFERENCES 

Balas, J., J. Sladek, and M. Drzik. 1983. Stress analysis by combination of holographic 
interferometry and boundary integral methods. Experimental Mechanics, 23: 196-202. 

Bezerra L. M. 1993. Inverse Elastostatics Solutions With Boundary Elements. PhD 
Thesis. Carnegie Mellon University. Pittsburgh, PA. 

Gill P. E., W. Murray, and M. H. Write. 1981. Practical Optimization. London: Academic 
Press. 

Reklaits G. V., A. Ravindran, and K. M. Ragsdell. 1983. Engineering Optimization - 
Methods and Applications. New York: John Wiley. 

Saigal S., R. Aithal, and J. H. Kane. 1989. Conforming boundary elements in plane 
elasticity for shape design sensitivity. Int. J. Num. Methods in Eng., 28: 2795-2911. 

Schnur D. S., and N. Zabaras. 1990. Finite element solution of two-dimensional inverse 
elastic problem using spatial smoothing. Int. J. for Num. Methods in Eng., 30: 57-75. 

Weathers J. M., W. A. Foster, W. F. Swinson, and J. L. Turner. 1985. Integration of 
laser-speckle and finite element techniques of stress analysis. Experimental Mechanics. 
25: 60-65. 

783 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

