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Abstract 

In this paper we describe the development of a 1D large 

signal code for traveling-wave tubes (TWT) modeling. 

This code is based in a mathematical model, which extend 

previous analysis by including the effects of the DC 

space-charge force in the electron dynamics description in 

time domain. As a consequence, a previous knowledge of 

the space-charge reduction factor or its evaluation is no 

longer needed. As a drawback, this code was shown to be 

not suitable for multi-drive frequency simulations. 

Therefore, we compiled a secondary code using the 
already established theory with an improved space-charge 

reduction factor, which is function of both the frequency 

and the modulation signal level. We present a numerical 

example comparing the results of the two codes to the 

results from the known theory. 

I. INTRODUCTION 

Throughout the history of TWTs, several mathematical 

models were developed to assist in its design. Among the 

linear models, also called small-signal models, the Pierce 

model [1] became the more widespread. However, that 

type of model was unable to predict the saturated output 

power of a TWT with satisfactory accuracy, since this 

phenomenon is intrinsically nonlinear. Some years later, 

Nordsieck [2] developed a nonlinear lagrangian model 
that was able to predict the saturation of a system 

consisting of a progressive wave interacting with an 

electron beam. That model was able to describe the 

overtaking between the beam particles, which occurs 

during the bunching process. However, that model did not 

consider the effects of space charge. This effect was 

considered later in the Rowe’s work [3] and in later 

works. Giarola presented a multi-frequency model [4] 

based on the Nordsieck’s nonlinear theory. That model 

allowed to extend the estimation of amplification for 

signals composed of more tones and intermodulation 

products. 
More recently, Wöhlbier presented a nonlinear eulerian 

model [5] that could be used for an excitation signal 

containing an arbitrary number of frequencies without 

increasing complexity of the model. Additionally, [5] also 

presented a lagrangian version (LATTE) of that eulerian 

code (MUSE), since lagrangian codes can better predict 

the behavior of the TWT near the saturation point. 

All the models mentioned here are one-dimensional, 

i.e., the particles have only axial movement. The electron 

beam is described as a sequence of disks, whose electric 

field is obtained by Gauss' law and is weighted by a space 

charge reduction factor ( scR ). The calculation of this 

factor is by itself a problem of great importance since it 

significantly affects the physics of the problem. 

Analytical formulae for calculating the scR  for certain 
special cases are found in [6]. The code CHRISTINE 1D 

[7] evaluates the scR  considering a sheath helix around 

the e-beam. 

The above mentioned TWT codes neglect the effects of 

the DC space charge force by assuming a neutralizer ion 

background around the e-beam. In the present work, we 

develop a TWT time domain model computing both the 

AC and DC space charge forces. This code is suitable for 

simulating the amplification of a single-frequency drive 

signal and its harmonics. However, for a multi-drive 

frequency simulation this code was shown to be 

impracticable. Therefore, for this purpose, we compiled a 
code based on the known theory [5] rather using an 

improved scR  that is calculated by the main code. The 

referred codes consider = ( )sc scR R ω  as a function of the 

frequency only. In our analysis, = ( ,| |)sc scR R Vω  is a 

function of the frequency and the signal level, given by 

the modulating signal voltage amplitude| |V . 

 In next section, we describe the TWT model and the 

obtaining of the ( ,| |)scR Vω . In section III, we present a 

comparison among the results of the codes for a 

numerical example available in the literature [5]. 

II. LARGE SIGNAL MODEL 

In this section we describe the development of the time 

domain TWT code and the obtaining of the space-charge 

reduction factor. 

A. The e-Beam Model 

The e-beam is modeled by dN  disks of charge q
regularly spaced by 0dz . The e-beam length must be 

enough to cover the interaction circuit length and the 

length corresponding to the disks that are going to enter 

the interaction circuit during the simulation time. Due to 

the DC space-charge force, the ends of the e-beam will 

spread out, increasing their velocity on the front end and 
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slowing down at the back end. Therefore, additional e-

beam length has to be considered due to this effect in both 

ends. The key point of the beam discretization and 

positioning is to keep a constant charge density along the 

interaction circuit during the whole time simulation when 

no modulation is present. Fig. 1 shows an illustrative 

picture of the discretization scheme. 

 
Figure 1. Illustrative scheme of the e-beam discretization 

along the interaction circuit. 

The equation system for the discretized e-beam under 

DC and AC space charge forces is 
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The symbols ( )jz t  and ( )ju t  denote, respectively, the 

position and the velocity of the j-th disk in the time t . 

The symbol ( )dF z∆  denotes the DC space-charge force 

and ( , )E z t  is the axial electric field in the position z and 

time t. The force ( )dF z∆  can be evaluated using the 

following analytic formula 
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for the cases where the ratio helix radius/beam radius is 

about 2 or greater. Otherwise, we recommend the use of 

an electrostatic solver to compute the forces between a 

pair of disks of charge. In this case, an actual tape or wire 

helix around the e-beam can be taken into account, 

resulting in a more accurate force function. 

The electric field is evaluated by solving the interaction 

circuit equation system, as it is described in the next 

section. 

B. Interaction Circuit Model 

The TWT interaction circuit is modeled by one or more 

sections of transmission lines, as illustrated in Fig. 2. In 
Fig. 2, ( , )V z t and ( , )I z t  are, respectively, the RF voltage 

and the RF current along the transmission line, ( , )R z t  is 

the surface resistivity of the interaction circuit, and 

( , )G z t  is the conductance responsible for the power loss 

in the helix dielectric supports. We describe the 

capacitance and inductance distributed along the 

transmission line in terms of its interaction impedance 

0( , )K z ω and its phase velocity ( , )pu z ω . 

 
Figure 2. Distributed parameters model for a transmission 

line coupled to an electron beam. 

Developing the equations for voltage and current 

transmission line, we have the very well-known 

telegrapher equation system. 

By hypothesis, the signals to be amplified are periodic 

in time with the fundamental angular frequency 0ω  and 
the fundamental period 0=2 /T π ω . Therefore, expanding 

the voltage, the current, and the charge density in Fourier 

series, the system of equations in the continuous 

frequency becomes discrete in fN  frequencies, i.e. 
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      (3) 

The parameters R , G , 0K , and pu  are obtained via 

cold models for the interaction circuit or by means of 

measurement. The indexes 1 and 2 denote respectively the 

even and odd expansion coefficients of the Fourier series. 

The coefficients 1, ( )n zρ  and 2, ( )n zρ  represent the 

harmonic charge density components of the Fourier 

series. We obtain the charge density term from the 

solution of the particle dynamics. 

C. Beam-Circuit Coupling 
The coupling between the equation system for the e-

beam dynamics (1) and the equation system for the 

solution of the RF voltage and current in the interaction 

circuit (3) is illustrated in Fig. 3. 



 
Figure 3. Flowchart of the coupling scheme between the 

equation systems for the beam dynamics and for the 

interaction circuit. 

From the solution of the charged particles dynamics, we 

obtain the charge density. Using the Fourier series 

expansion, we obtain the coefficients of the harmonic 

charge density. These coefficients are the source terms in 

the solution of the equation of the transmission line. 

Solving the transmission line, we obtain the distribution 

of harmonic current, harmonic voltage and harmonic 

electric field along the transmission line. Using the 

inverse Fourier transformation, we rebuild the time 

varying electric field to be used in the next step in the 

solution of the particles dynamics equation system (1). 

We calculate the charge density by means of the 
relative shift of particles, which initially were equally 

spaced, indicating a uniform initial charge density along 

the interaction circuit. Because of the velocity modulation 

performed by the axial electric field associated with the 

excitation signal, the particles have their relative positions 

changed, implying in a variation of charge density. The 

charge density at a given position of the circuit at the 

instant of interaction is given by 
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where 0( , )z z t  is the position of a given particle in terms 

of its initial position and the instant of time. 

Performing the Fourier series expansion, the harmonic 

charge density coefficients are given by 
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 It is not necessary to take more than one group of 

samples given by 0/dN λ , because when the system 

reaches the steady state, the information from other 

groups of samples ( 02 /dN λ , 03 /dN λ ,...) is redundant. 

After solving the equation system (3) for each 

frequency component, the time varying electric field 

along the interaction circuit may be rebuild from the 

Fourier coefficients 
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which contributes to the AC part of the space charge force 

in the next iteration of the equation system (1). 

D. The multi-frequency simulation 
In this type of model for TWT, the way to simulate a 

multi-frequency amplification is to assume a baseband 

frequency from which all signals (carriers, harmonics and 

intermodulation products) are multiples. Thus, the index 

n in (4) assumes only values that correspond to the 

frequencies of interest. The code based on (1) and (4) 

worked as expected for amplification of a carrier and its 

harmonics. However, for a practical case with two carriers 

it was shown to be impracticable. As the carriers are 

spectrally close, the baseband frequency decreases. For 

cases of interest, the baseband wavelength is about a 

hundred times the length of the interaction circuit. This 
implies a beam length of the same order, making the 

solution infeasible due to the huge number of disks 

required for the simulation. Additionally, the simulation 

time required to achieve convergence makes this 

approach impractical. 

The solution for the simulation of the amplification of 

several carriers was to write a code based on the known 

theory [5]. This secondary code is built entirely in the 

frequency domain, and ignores the DC space charge 

force. However, we compute an enhanced space charge 

reduction factor = ( ,| |)sc scR R Vω , which is a function of 

both the frequency and the modulating signal level. 

E. The Space Charge Reduction Factor 

There are some formulas in the literature to calculate 

the scR , but they involve approximations in the slow-

wave structure. Usually, the structure around the beam is 

considered as a metallic pipe [6], which is a good 

approximation when the ratio helix radius over beam 

radius is 2 or greater. A more elaborated formula [7] 

considers a sheath helix around the electron beam. 

 On the other hand, the space charge reduction factor 

can be "measured" from the interference pattern of space 

charge waves generated in the electron beam by the 

disturbance caused by the modulating signal [8]. Using 
the code based on the equation systems (1) and (3), we 

can simulate the excitation of space charge waves and 

analyze their interference pattern. As a result of the 



interference of these waves, we see peaks and valleys in 

the harmonic charge density curve. The position of the 

first peak corresponds to /4qλ  in the case of a klystron 

type modulation and to /2qλ  in the TWT case. The 

symbol qλ denotes the reduced plasma wavelength. Using 

a DC space-charge force calculated by an electrostatic 

solver for an actual slow-wave structure, it is possible to 

find accurate space-charge reduction factors. A more 

detailed description of this work can be found in [9]. 

 Moreover, this analysis allowed us to consider the 

effect of the modulator signal amplitude. It is known that, 

at the end of the interaction circuit, the electric field 
associated with traveling waves has sufficient amplitude 

to promote overtaking among the electrons. As an effect, 

the reduced plasma wavelength is decreased, which points 

an increased in the space-charge reduction factor. 

III. NUMERICAL EXAMPLE 

In this numerical example, the TWT is modeled by a 

single section with the parameters shown in Table I and 

Table II of [5]. The results presented below were obtained 

using the three variants of the code developed. Namely: 

TD  denotes the variant in the time domain, considering 

the DC space-charge force. This is the main code of this 

work. The code in the frequency domain in which the 

space-charge reduction factor is a function only of the 

frequency is denoted by ( )scFD R f− , which represents 
the known theory [5]. Last, ( ,| |)scFD R f V− , denote the 

code in the frequency domain where the space-charge 

reduction factor is a function of both the frequency and 

the level of the modulating signal, which is our solution 

for the problem of multi-frequency simulation. 

Figure 4 shows the amplification of a drive signal at 1.6 

GHz and its first harmonic at 3.2 GHz in order to compare 

the codes TD  and ( )scFD R f− . For the drive signal, the 

power predicted by TD  grows up to 2 dB more than the 

power predicted by ( )scFD R f−  at saturation. For the 

harmonic signal, TD  predicts a power 8 dB higher than 
( )scFD R f−  in the small signal region. At saturation, this 

difference is reduced to 1 dB. 

Figure 5 presents the phase space of electrons along the 

interaction circuit. We note that the phase space of the 

electron beam is smoother when the effect of DC space 

charge force is not considered. On the other hand, when 

we consider the DC space charge force, the electronic 

bunches also "push" the electrons just ahead, thus 

preventing their sudden loss of kinetic energy. This could 

 
Figure 4.  Output power (in dBm) as a function of the 

axial position along the interaction circuit. 

 
Figura 5. Electron beam phase space for the numerical example simulated considering (above) and neglecting (below) 

DC space charge forces. 



explain the smoother approach to saturation seen in TD  

result for the output power. A similar behavior will be 

seen in the result of the ( ,| |)scFD R f V−  code. 

Figure 6 presents the variation of the space-charge 

reduction factor for the frequencies of 1.6 GHz and 3.2 

GHz as a function of the amplitude of the modulating 

signal voltage. We note that scR  remain around a fixed 

value (Table II of [5], which gives 2 ( )scR f ) only during 

the small signal regime. In the large-signal regime, scR  
start to grow up. This variation is due to the variation in 

the DC space charge forces in the electron bunches. 

Figure 7 shows a comparison between the codes

( ,| |)scFD R f V−  and ( )scFD R f−  using the output power 

as a function of axial position for the 1.6 GHz drive signal 

and its first harmonic. The difference between the two 

approaches appears close to the saturation, because of the 

variation in the space charge reduction factor. As it was 

observed in the TD  result, the ( ,| |)scFD R f V−  predicts 

a smoother approach to the saturation. However, in this 

case, the output power is about 1.5 dB lower. Therefore, 

the increase of the space charge reduction factor near the 

saturation is responsible by the smoother approach to 

saturation observed in the codes TD  and 

( ,| |)scFD R f V− . 

Figure 8 presents the transfer function, together with the 

gain curves and AM-AM conversion for the three code 

variants. The small signal gain predicted by TD  is about 
2 dB greater than that predicted by the variants in the 

frequency domain. The 1 dB gain compression point is 

advanced about 1.5 dB in the ( )scFD R f−  result if 

compared to the other two variants. The AM-AM 

conversion predicted by TD  and by ( ,| |)scFD R f V−  is in 

close agreement until -33 dBm. After this point there is 

divergence, which will be subject of further investigation. 

 In order to verify the multi-frequency behavior of the 

 
Figure 6. Space charge reduction factor as a function of 

the modulating signal level for two frequencies. 

 
Figure 7. Output power as a function of the axial position 

predicted by the codes in the frequency domain for the 

drive signal at 1.6 GHz and its first harmonic. 

    
Figura 8. Transfer function and gain (left) and AM-AM conversion (right) predicted by the three codes used in the 

numerical example simulation. 



code ( ,| |)scFD R f V− , we simulated the amplification of 

two tones, 1.600 GHz and 1.601 GHz, its third-order 

intermodulation products (3IM) at 1.599 GHz and 1.602 

GHz and its harmonics 3.2 GHz and 3.202 GHz. The 
frequency 3.201 GHz was added for convenience. In   

Fig. 9, we compare the results from ( ,| |)scFD R f V−  to 

the ones from ( )scFD R f− . Because of its wideband 

behavior, the characteristics of the simulated TWT section 

vary less than 1% from 1.599 to 1.602 GHz and from 3.2 

to 3.202 GHz. Therefore, we considered the function 

(1.6 ,| |)scR GHz V  valid from 1.599 to 1.602 GHz. 

Similarly, we considered (3.2 ,| |)scR GHz V valid from 3.2 

to 3.202 GHz. The carriers are the frequencies indexed by 

2 and 3, while the 3IM frequencies are indexed by 1 and 

4. The harmonic frequencies are indexed by 5 and 7. The 

outputs were taken considering a gain compression of 1 
dB, as it is usual in the characterization of power 

amplifiers. The code ( )scFD R f−  predicts 3IMs with 

amplitudes of -11.5 to -12 dB below the carriers, while 

the code ( ,| |)scFD R f V−  predicts values about -13.5 dB. 

The code ( ,| |)scFD R f V−  also predicts greater amplitude 

for the harmonics compared to ( )scFD R f− . Is must be 

due to the DC space-charge forces, which prevent 

smoother overtakes and generates more peaks in the beam 

current. This effect contributes for a greater harmonic 

generation. 

IV. CONCLUSION 

We described the development of codes to simulate the 

electromagnetic behavior of TWTs and presented a 

numerical example, whose input data were obtained in the 
literature. In summary we tested three codes: The code 

denoted by ( )scFD R f−  is our implementation of a 

theory available in the literature for a multi-frequency 

code for TWTs. This version does not consider the DC 

space-charge forces and the space-charge reduction factor 

is a function of frequency only. The code denoted by TD  

is our main contribution in his work. This code runs in the 

time domain and considers the DC space-charge forces. 

The third code, denoted by ( ,| |)scFD R f V−  is our 

solution for multi-frequency simulation. This code 

considers a space-charge reduction factor that is function 

of the frequency and the level of the modulating signal as 

well. 

The numerical example presented served to show the 

level of agreement between the results of our model 
against those of the model available in the literature. The 

agreement verified was about 98% for the gain, 96% for 

the output power. The difference could be explained in 

the most cases by the effects of the DC space-charge force 

that we included in our code. Experimental validation is 

under arrangement. 
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Figura 9. Output power spectrum (in dBc) showing the 
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