LABELING PROCEDURES FOR THE PREPARATION OF ¹⁸⁸Re-DMSA(V)

Tânia P. Brambilla¹, João A. Osso Jr.¹

¹ Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP) Av. Professor Lineu Prestes 2242 05508-000 São Paulo, SP taniabrambilla@yahoo.com.br jaosso@ipen.br

ABSTRACT

¹⁸⁸Re has received a lot of attention in the past decade, due to its favorable nuclear characteristics [t_{1/2} 16.9 h, E_{β}_{max} 2.12 MeV and E_{γ} 155 keV (15%) suitable for imaging], including the fact that it is carrier-free and can be obtained cost-effectively through the generator ¹⁸⁸W-¹⁸⁸Re. Besides the therapeutic usefulness of ¹⁸⁸Re, the emission of the 155 keV gamma photon is an added advantage since the biodistribution of ¹⁸⁸Re-labeled agents can be evaluated *in vivo* with a gamma camera. Biodistribution studies of ¹⁸⁸Re-DMSA(V) have shown that its general pharmacokinetic properties are similar to that of ^{99m}Tc-DMSA(V), so this agent could be used for targeted radiotherapy of the same tumors, i.e., medullary thyroid carcinoma, bone metastases, soft tissue, head and neck tumors. The aim of this work is to evaluate two labeling procedures for the preparation of ¹⁸⁸Re-DMSA(V). ¹⁸⁸Re-DMSA(V) was prepared by two methods. The first method was prepared using a commercial kit of DMSA(III) for labeling with ^{99m}Tc, at high temperature (100°C). The second method was prepared in a vial containing 2.5 mg of DMSA, 1.00 mg of SnCl₂.2H₂O and 30 mg of sodium oxalate, in a total volume of 1.1 mL. The pH was adjusted to 5 with 37% HCl. After labeling the solution was stirred and incubated for 15 min at room temperature. The radiochemical purity was determined using TLC-SG developed with two different solvent systems. Preliminary results for both methods of labeling ¹⁸⁸Re-DMSA(V) showed that the labeling yield was >90%.

1. INTRODUCTION

Radionuclide therapy (RNT) is emerging as an important tool of nuclear medicine. Apart from the well established ¹³¹I, several other promising radionuclides have been identified, among them ¹⁸⁸Re, ⁹⁰Y and ¹⁷⁷Lu are considered to be the most promising radionuclides for *in vivo* therapy ^[11]. ¹⁸⁸Re has received a lot of attention in the past decade, due to its favourable nuclear characteristics: $t_{1/2}$ 16.9 h, $E_{\beta max}$ 2.12 MeV and E_{γ} 155 keV (15%) suitable for imaging, including the fact that it is carrier-free and can be obtained cost-effectively through the generator ¹⁸⁸W-¹⁸⁸Re. Besides the therapeutic usefulness of ¹⁸⁸Re, the emission of the 155 keV gamma photon is an added advantage since the biodistribution of ¹⁸⁸Re-labeled agents can be evaluated *in vivo* with a gamma camera. Biodistribution studies of ¹⁸⁸Re-DMSA(V) have shown that its general pharmacokinetic properties are similar to that of ^{99m}Tc-DMSA(V), so this agent could be used for targeted radiotherapy of the same tumors, i.e., medullary thyroid carcinoma, bone metastases, soft tissue, head and neck tumors ^[2,3]. In therapy of medullary thyroid carcinoma, the ¹⁸⁸Re-DMSA(V) would be an excellent alternative, once this specific type of tumor doesn't uptake ¹³¹I ^[4].

Technetium and rhenium belong to group 7 of the periodic table of elements, so it's expected that they exhibit similar chemical properties, but their reduction potential are different. That's because technetium belongs to the second transition series, whereas rhenium occupies the bottom position in the group as a third series transition metal. Thus, the reduction potential of pertechnetate turns out to be greater than that of perrhenate. Because of this fact, the preparation conditions of these two radiopharmaceuticals are also different. ^{99m}Tc-DMSA(V) is prepared in alkaline solution, whereas ¹⁸⁸Re-DMSA(V) has to be prepared in acidic solution. The commercial kit of DMSA (III) for labeling with ^{99m}Tc, used for kidney scintigraphy, is done in acidic solution, thus it can be used to prepare the ¹⁸⁸Re-DMSA (V) ^[5]. Different formulations are also found in literature ^[2,3,6].

The aim of this work is to evaluate two labeling procedures for the preparation of 188 Re-DMSA(V) by two different methods.

2. MATERIALS AND METHODS

2.1. Preparation of ¹⁸⁸Re-DMSA(V)

2.1.1. Method I

Initially ¹⁸⁸Re-DMSA(V) was prepared using a commercial kit of DMSA (III) for labeling with ^{99m}Tc (IPEN-CNEN/SP). The kit contained 1.0 mg de DMSA, 0.44 mg de SnCl₂.2H₂O, 0.70 mg of ascorbic acid and 50 mg de inositol. The labeling was done with 1 mL of ¹⁸⁸ReO₄⁻ (~185MBq) and the reaction time was 30 minutes at high temperature (100 °C). The variables studied were: reaction temperature (100 °C and room temperature), reaction time (20 and 30 minutes) and volume of ¹⁸⁸ReO₄⁻ (1.0 and 2.0 mL).

2.1.2. Method II

The second method was prepared in a vial containing 2.5 mg of DMSA (dimercaptosuccinic acid), 1.00 mg of SnCl₂.2H₂O and 30mg of sodium oxalate, in a total volume of approximately 1 mL. The pH was adjusted to about 5 with 37% HCl. The labeling was done with 1 mL of 188 ReO₄⁻ (~185MBq) and the reaction time was 15 minutes at room temperature. The variables studied were: reducing agent mass (0.2; 0.6; 1.0; 1.5 e 2.0 mg) and mass of DMSA (1.25; 2.5 e 5.0 mg).

2.1.3. Radiochemical quality control

The radiochemical purity was evaluated by thin layer chromatography on silica gel (TLC-SG) to determine the labeling efficiency and impurity formation. TLC-SG strips (1.5×12)

cm) were developed in two different solvent systems. Acetone was used in order to separate ReO_4^- (R_f 1) from ¹⁸⁸Re-DMSA(V) and ReO₂ (R_f 0) and 5% glycine was used in order to separate ReO₂ (R_f 0) from ^{99m}Tc-DMSA(V) and ReO₄⁻ (R_f 1).

The distribution of radioactivity on the TLC-SG strips was determined using a calibrated Germanium hyperpure detector model GX1518 (HPGe) coupled to a multichannel analyzer system (Canberra Inc., USA).

3. RESULTS AND DISCUSSION

3.1. Preparation of ¹⁸⁸Re-DMSA(V)

3.1.1. Method I

Figures 1, 2 and 3 show the results of the effect of the variation of reaction temperature and time and volume on the labeling efficiency of ¹⁸⁸Re-DMSA (V) prepared with a commercial kit of ^{99m}Tc-DMSA (III). The best results of labeling yield (> 98%) were achieved when it was used 30 minutes of reaction time with heating at 100 °C and 1 mL of ¹⁸⁸ReO₄⁻.

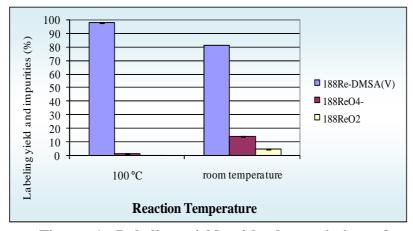


Figure 1. Labeling yield with the variation of reaction temperature.

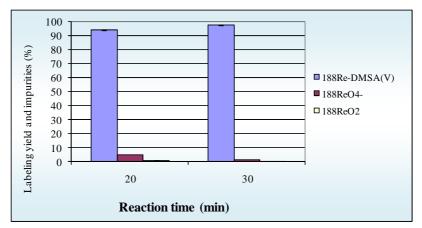


Figure 2. Labeling yield with the variation of reaction time.

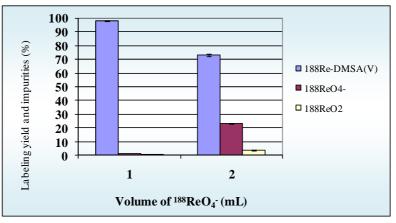


Figure 3. Labeling yield with the variation of volume of 188 ReO₄.

3.1.2. Method II

Figures 4 and 5 show the results of the effect of the variation of the reducing agent and DMSA masses, respectively on the labeling efficiency of ¹⁸⁸Re-DMSA (V) prepared with method II. The best labeling yield was achieved using 1.0 mg of SnCl₂.2H₂O and 2.5 mg of DMSA but other parameters have to be studied for the optimization of the radiolabeling.

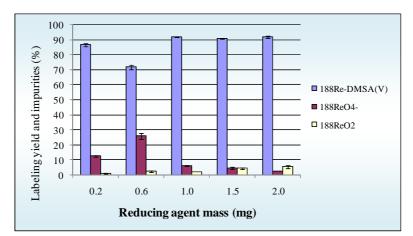


Figure 4. Labeling yield with the variation of reducing agent mass.

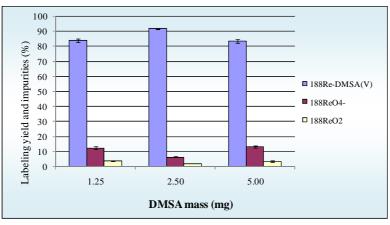


Figure 5. Labeling yield with the variation of DMSA mass.

The advantage of this method is that it does not require high temperatures to achieve good labeling yields due to the use of oxalate. This compound complexes with Re in a more appropriate geometry and kinetics promoting a more efficient reduction of ¹⁸⁸ReO₄⁻ when compared with the method I ^[6].

4. CONCLUSIONS

Preliminary results for both methods of labeling 188 Re-DMSA(V) showed that the labeling yield was >90% but method II requires milder conditions. Further experiments are also necessary to optimize the labeling methodology of 188 Re-DMSA(V).

ACKNOWLEDGMENTS

This study was supported by CNEN in the program of scholarships for post graduation. Gratefulness to the IPEN-CNEN/SP for participation in 2009 International Nuclear Atlantic Conference - INAC 2009.

REFERENCES

- 1. SARKAR, S.K.; VENKATESH, M.; RAMAMOORTHY, N.; *Evaluation of two methods for concentrating perrhenate (¹⁸⁸Re) eluates obtained from ¹⁸⁸W-¹⁸⁸Re gerador*. Applied Radiation and Isotopes. Vol. 67, p. 234-239, 2009.
- SALINAS, L. G.; FLORES, G. F.; MURPHY, C. A.; LÓPEZ, M. P.; GUTIÉRREZ, S. H.; NIETO, J. A. Uptake of the 188Re(V)-DMSA complex by cervical carcinoma cells in nude mice: pharmacokinetics and dosimetry. Applied Radiation and Isotopes, nº 54, pp. 413-418, 2001.
- 3. PIRMETTIS, I.; LIMOURIS, G.S.; BOUZIOTIS, P.; PAPADOPOULOS, M.; KNAPP JR., F.F.; CHIOTELLIS, E.; *Pentavalent rhenium-188 dimercaptosuccinic acid: a new kit formulation and its inicial evaluation in mice*. Radiochim. Acta 89, 115-118, 2001.
- 4. SAHA, G. B. Fundamentals of Nuclear Pharmacy. 4ed. Springer Verlag, 1998.
- SINGH, J.; REGHEBI, K.; LAZARUS, C.R.; CLARKE, S.E.M.; CALLAHAN, A.P.; KNAPP JR, F.F.; BLOWER, P.J. Studies on the preparation an isomeric composition of ¹⁸⁶Re and ¹⁸⁸Re- pentavalent rhenium dimercaptosuccinic acid complex. Nuclear Medicine Communications, 14, 197-203, 1993.
- BOLZATI, C.; BOSCHI, A.; UCCELLI, L.; DUATTI, A.; FRANCESCHINI, R.; PIFFANELLI, A. An Alternative Approach to the Preparation of ¹⁸⁸Re Radiopharmaceuticals from Generator-Proced [¹⁸⁸ReO₄]⁻: Efficient Synthesis of ¹⁸⁸Re(V)meso-2,3-Dimercaptosuccinic Acid. Nuclear Medicine and Biology, vol. 27, pp. 309-314, 2000.