FP 01

THE EFFECT OF NEODYMIUM IN THE SPECTROSCOPIC PROPERTIES OF HEAVY METAL OXIDES GLASSES

L. R. P. Kassab^a, L. C. Courrol^b, N. U. Wetter^b, L. Gomes^b, and C. M. S.P.Mendes^a

a. FATEC-SP, Praça Coronel Fernando Prestes 30, SP, CEP 01124-060, b. Centro de Lasers e Aplicações, IPEN-CNEN, SP

Spectroscopic properties of a new family of neodymium doped heavy metal oxides (PbO-Ga₂O₃-Bi₂O₃) glasses, produced at the Laboratory of Glasses and Datation of FATEC-SP are presented. Recently the literature reported the use of Er³⁺, Tm³⁺, Dy³⁺ and Pr³⁺ in this host. In these cases the highest emission cross-section is of $0.7 \times 10^{-20} \text{cm}^2$ (for Er³⁺ at 2730nm and for Pr³⁺ at 1300nm). The highest fluorescence lifetime measured is 0.9ms for the upper level of Er³⁺, ⁴I_{11/2}, followed by Tm³⁺ (1.035ms for the ³F₄ level); Dy³⁺ and Pr³⁺ present low fluorescence lifetimes given, respectively by 0.005ms (⁶H_{9/2} level) and 0.053ms (¹G₄ level). The contribution of our work is to study, for the first time laser transitions for wavelengths lower than 1300nm in glasses in the system (PbO-Ga₂O₃-Bi₂O₃). In this work we show the results of emission cross-section, fluorescence lifetime, Judd-Ofelt parameters, transition probability, branching ratios related to the samples produced with different concentrations of Nd³⁺ (0.1 up to 2mol%). These glasses are dark red, have high refractive index (2.5) and transmission cutoff in the far infrared (8µm). The highest fluorescence lifetime, 0.130ms occurs for 0.5mol% and it decreases to 0.06ms for 2mol%. At 1066nm the peak emission cross-section is of about 10⁻²⁰cm² and the branching ratio is 0.5 for 1mol%.