

ISSN 0101-3084

CNEN/SP

DETERMINAÇÃO ESPECTROGRÁFICA DE Nb, Hf, Mo, Ta, Ti, V, W E Zr EM COMPOSTOS DE URÂNIO

Tânia Grigoletto e Antonio Roberto Lordello

PUBLICAÇÃO IPEN 91

FEVEREIRO/1986

ISSN 0101-3084

FEVEREIRO/1986

PUBLICAÇÃO IPEN 91

DETERMINAÇÃO ESPECTROGRÁFICA DE Nb, Hf, Mo, Ta, Ti, V, W e Zr EM COMPOSTOS DE URÂNIO

Tânia Grigoletto e Antonio Roberto Lordello

DEPARTAMENTO DE PROCESSOS ESPECIAIS

CNEN/SP

INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES
SÃO PAULO - BRASIL

Série PUBLICAÇÃO IPEN

INIS Categories and Descriptors

B11.20

EMISSION SPECTROSCOPY
QUANTITATIVE CHEMICAL ANALYSIS
URANIUM COMPOUNDS

DETERMINAÇÃO ESPECTROGRÁFICA DE Nb, Hf, Mo, Ta, Ti, V, W & Zr EM COMPOSTOS DE URÂNIO

Tânia Grigoletto e Antonio Roberto Lordello

RESUMO

Apresente-se um método espectrográfico para a determinação de Nb, Hf, Mo, Te, Ti, V, W e Zr em compostos de urânio. Após a adição de uma alíquote de uma solução de ferro as impurezas são seperadas de uma solução de sulfato de uranilo pela precipitação com cupferron e posterior extração dos cupferratos com uma mistura de álcool isoamífico e clorofórmio. O ferro aumenta a messa do precipitado e serve como metriz espectrográfica. A fase orgânica da extração é evaporade, seca e callinada. Pesa-se a messa obtida e completa-se a 20mg com Fe_2O_3 . Adiciona-se, ne proporção 1:1 (m/m), grafita contenuo 8% de NaF e 200 μ g/g de Pd (padrão interno). Faz-se a excitação em arco de corrente contínua. Partindo-se de 10g U, os limites de determinação obtidos foram: 0,10 μ g/g de Nb, 0,20 μ g/g de Hf, 0,25 μ g/g de Mo, 1,0 μ g/g de Ta, 0,16 μ g/g de Ti, 0,25 μ g/g de V, 1,0 μ g/g de W e 0,60 μ g/g de Zr. Os desvios padrões relativos estão no intervalo de 3,7% a 18%, exceto para o elemento Ta que foi de 37%.

SPECTROGRAPHIC DETERMINATION OF Nb, Hf, Mo, Ta, Ti, V, W AND Zr IN URANIUM COMPOUNDS

ABSTRACT

A spectrographic method is described for the determination of Nb, Hf, Mo, Ta, Ti, V, W and Zr in uranium compounds. Iron is used both as a coprecipitation agent and as matrix for the spectrographic analysis. The elements are separated from uranium by extraction as the cupferrates with iso-amyl alcohol-chloroform mixture. After evaporation of the solvent and ignition of the residue, Fe_2O_3 is added to this residue as much as necessary to complete 20mg and then blended with another 20mg of previously prepared graphite with 8% NaF and 200 μ g/g Pd. The excitation is carried out in a direct current arc. For 10g of uranium the limits expressed as μ g/g are: 0,1 Nb, 0,2 Hf, 0.25 Mo, 1,0 Ta, 0,16 Ti, 0,25 V, 1,0 W and 0,60 Zr. The relative standard deviations are in the range from 3,7% to 18% but 37% was attainable only for Ta.

INTRODUÇÃO

Durante as etapes de fabricação do combustível nuclear, os compostos de urânio são submetidos diversas vezes a um controle analítico da qualidade. A espectrografia de emissão é largamente utilizada, principalmente por possibilitar a determinação de um grande número de elementos a nível de traços (µg/g), requerendo uma quantidade de amostras relativamente pequena.

A técnica espectrográfica de destilação fracionada com carreador é largamente empregada para a determinação direta de diversos elementos em composto- de urânio (4,5,9,13,20,23). A determinação por essa técnica analítica de elementos de natureza refratária como Nb, Hf, Mo, Ta, Ti, V, W e Zr também é utilizada (10,11,15,18,22,23,26,29), porém não é muito sensível e tampouco aplicada a todos esses elementos simultaneamente. Alguns trabalhos (22,29) mostram uma maior sensibilidade de detecção para alguns elementos. Todavia, para se obter um limite de determinação menor, necessita-se de uma separação química da matriz interferente.

O método de separação mais comumente utilizado é a extração por solventes. O 2-Te-noiltrifluoroacetona (TTA) é um reagente empregado na extração de Hf e Zr^(6,8,12,17). Para a extração de Nb, Hf, Mo, Ta, Ti, V, W, e Zr geralmente emprega-se o cupferron (Nitrosofenilhidroxilamina de amônio)^(2,3,12,14,21,24,25,27) ou o BPHA (H-Benzoilfenilhidroxilamina)^(3,7,12,19,28). O BPHA possui uma maior estabilidade química e térmica que o cupferron mas é um reagente mais específico. Por exemplo, a recuperação de vanádio não é boa em meio fortemente ácido (HC1) que se emprega na análise com BPHA⁽³⁾. O cupferron, por não ser tão seletivo, possibilita a análise de um maior número de elementos simultaneamente.

O procedimento analítico em que se emprega o cupferron envolve a precipitação dos cupferratos dos elementos de interesse e a extração desses cupferratos com um agente extrator como o clorofórmio ou uma mistura de álcool isoaniítico-clorofórmio. O urânio é previamente oxidado ao estado hexavalente para evitar a sua precipitação. A fase orgânica é seca, calcinada e o resíduo é preparado para ser analisado espectrograficamente. Esse resíduo pode ser dissolvido com pequenas quantidades de ácido e analisado pela técnica do disco rotatório, como indicado pela ASTM^(2,3). Pode, também, ser analisado por arco de corrente contínua, desde que se tenha feito uma adição prévia de um elemento que também seja precipitado pelo cupferron, como o Fe^(1,6),25,27) ou o Bi^(2,4), cujo óxido servirá como matriz espectrográfica.

Neste trabalho estabeleceu-se um procedimento anatítico, utilizando-se o arco de corrente contínua como fonte de excitação. Fez-se a precipitação das impurezas com o cupferron e a extração dos cupferratos com uma mistura de álcool isoamílico-clorofórmio. Empregou-se o óxido de ferro como matriz espectrográfica.

PARTE EXPERIMENTAL

Reagentes Utilizados:

- Cupferron p. a. MERCK
- H₂SO₄ p. a. MERCK
- K MnO₄ p.a. ECIBRA
- Álcool Isoamílico p. a. Q. M.
- Clorofórmio p. a. CARLO ERBA
- Fe₂O₃, Nb(pó), HfO₂, MoO₃, Ta(pó), Ti(esponja), V₂O₅, WO₃, ZrO₂, Pd(esponja)
 NaF de pureza espectrográfica da Johnson-Matthey Chemicals Ltd.
- Grafita SP-2 da NATIONAL CARBON Co.

Preparação das Soluções Utilizadas na Extração:

- Solução de cupferron (80 g/l): dissolvem-se 4 g de cupferron em água, completando-se o volume a 50 ml. Estocar em vidro âmbar e à temperatura <5°C.
- Acido sulfúrico 6N: diluem-se 167 ml H₂SO₄ concentrado em água, completando-se o volume a um litro.
- Solução 7:3 (V/V) de álcool isoamílico e clorofórmio: mistura-se 700 ml de alcool isoamílico com 300 ml de clorofórmio. Satura-se a mistura H₂ SO₄ 6N, agitando-se em funil de separação.

- Solução de permanganato de potássio 0,1N: dissolvem-se 3,16 g de K MnO₄ em água, completando-se o volume a um litro.
- Solução de Ferro (1 mg/ml de Fe₂O₃): dissolvem-se 100 mg de Fe₂O₃ com mínima quantidade de HCl diluido (1:1 V/V) e dilui-se para 100 ml com água.

Preparação das Soluções para as Amostras de Referência:

- Solução de Nb (1 mg/ml): dissolvem-se 100,0 mg de Nb metálico em pó com quantidades mínimas de HNO₃ concentrado e Hf concentrado. Dilui-se a 100 ml com HNO₃ concentrado.
- Solução de Hf (1 mg/ml): dissolvem-se 117,9 mg de HfO₂ com 5 ml de HF concentrado e 15 ml de H₂SO₄ concentrado. Evapora-se até secar o material e dissolve-sa o resíduo com H₂SO₄ 4% (em volume), completando-se a 100 ml.
- Solução de Mo (0,5 mg/ml): dissolvem-se 75,1 mg de MoO₃ com quantidade mínima de NH₄OH diluido (1:1, V/V), dilui-se para 100 ml com água.
- Solução Ta (1 mg/ml): dissolvem-se 100 mg de Ta metálico em pó com quantidade mínima de HNO₃ concentrado e HF concentrado. Dilui-se a 100 ml com HNO₃ concentrado.
- Solução de Ti (0,5 mg/ml): dissolvem-se 50,0 mg de Ti metálico em 100 ml de H₂SO₄ diluido (1:1, V/V).
- Solução de V (0,5 mg/ml): dissolvem-se 89,3 mg de V₂O₅ em 100 ml de H₂SO₄ concentrado.
- Solução de W (1 mg W/ml): dissolvem-se 126,1 mg de WO₃ com quantidade mínima de NaOH 0,1N e dilui-se a 100 ml com água,
- Solução de Zr (2 mg/ml): dissolvem-se 270,2 mg de ZrO₂ com 10 ml de HF concentrado e aquecimento brando. Após a dissolução adicionam-se 15 ml de H₂SO₄ concentrado e evapora-se à secura. Dissolve-se o resíduo com H₂SO₄ 4% (em volume), completando-se a 100 ml.
- Solução de referência I (5 μg/ml de Mo, Ti e V; 10 μg/ml de Nb, Hf, Ta e W; 20 μg/ml de Zr): pipeta-se 1ml de cada solução estoque dos elementos, transfere-se para um balão volumétrico de 100 ml e completa-se o volume com água.
- Solução de referência II (0,5 μg/ml de Mo, Ti e V; 1,0 μg/ml de Nb, Hf, Ta e W;
 2,0 μg/ml de Zr): pipeta-se 10 ml da solução de referência I para um balão volumétrico de 100 ml e completa-se o volume com água.

Procedimento da Extração:

Deve-se tomar um cuidado especial, durante a extração, com a solução de cupferron utilizada para a precipitação dos elementos estudados. Ela só é estável à temperaturas inferiores a 5°C e por per/odos inferiores a um mês. Verifica-se sua decomposição pelo aparecimento de um precipitado escuro. Portanto, o seu preparo deve ser sempre recente, mantendo-se a temperatura inferior ou igual a 5°C durante toda a extração. Os passos da extração são descritos em seguida:

- Pesa-se uma massa de óxido de urânio a ser analisado^(*) equivalente a 10 g de urânio metálico. Transfere-se para um cadinho de porcelana.
- Adiciona-se um volume de 12 ml de HNO3 concentrado para a dissolução do composto.
- Aquece-se, lentamente, em chapa aquecedora até a solução secar.
- Deixa-se esfriar e adicionam-se 2 ml da solução de ferro (1 mg/ml de Fe₂O₃),
- Coloca-se um volume de 15 ml de H₂SO₄ concentrado e, agitando-se lentamente com uma bagueta, aquece-se o cadinho até a total dissolução do sólido; durante esse tratamento aumenta-se, gradativamente, a temperatura da chapa aquecedora.

^(*) O método analítico descrito aplica-se também à análise de UF₄ e de UF₆, com tratamento químico adicional (3,14,24,25,27) pera conversão desses compostos a U₃O₈. Para urânio metálico é direto, como o método descrito.

- Deixa-se esfriar o sulfato de uranilo obtido.
- Uma hora antes de se iniciar a extração, adiciona-se um volume de 50 ml de H₂SO₄
 6N, aquecido a aproximadamente 60°C.
- Ainda a 60°C, oxida-se o urânio que ainda estiver no estado tetravalente para o estado hexavalente, com a solução de KMnO₄ 0,1N, até a mudança total de coloração. Colocam-se 2 gotas em excesso.
- Transfere-se essa solução para um funil de separação com capacidade para 125 ml.
 Esse funil, assim como os demais, deve possuir torneira de Teflon para evitar que a solução seja contaminada pela graxa lubrificante utilizada com torneiras de vidro.
- Reduz-se a uma temperatura inferior ou igual a 5°C, em banho de gelo. Essa temperatura deve ser mantida por todos os passos seguintes, até menção em contrário.
- Adiciona-se uma alíquota de 10 ml da solução de cupferron, agitando-se bem a solução. Aparecerá um precipitado de cupferrato de ferro, além dos elementos de interesse Nb, Hf, Mo, Ta, Ti, V, W e Zr.
- Adicionam-se 20 ml da solução de álcool isoamílico-clorofó; mio e agita-se muito bem a solução. O precipitado se dissolve na fase orgânica.
- Deixa-se dascansar em banho de gelo aproximadamene por 10 minutos para as fases se separarem.
- Transfere-se a fase aquesa para outro funil com capacidade de 125 ml.
- A fase aquosa é submetida a uma outra extração, com 10 ml de solução de álcool isoamítico-clorofórmio.
- Após a separação das fases, transfere-se a fase aquosa para outro funil e reunem-se as fases orgânicas.
- Repete-se a extração com alíquotas de 10 ml da solução extratora, até a fase orgânica ficar incolor (3 a 4 extrações são suficientes).
- Lavam-se as fases orgânicas reunidas com 20 ml de H₂SO₄ 6N e 2 ml da solução de cupferron.
- Transfere-se a fase orgânica para um cadinho de porcelana (temperatura ambiente).
- Evapora-se, lentamente, em banho-maria, até quase a secura.
- Aquece-se ao redor de 300°C até secar completamente.
- Coloca-se o resíduo em mufla aquecida a 300°C e eleva-se a temperatua gradativamente a 600°C calcinando-se por uma hora.
- O cadinho deve ser tampado ao ser retirado da mufla e colocado no dessecador.

Preparação das Amostras de Referência:

Utilizou-se $U_3\,O_8$ na preparação das amostras de referência. Esse foi obtido pela purificação de UO_2 (de procedência belga) pelo método de extração descrito, precipitação de diuranato de amônio e sua calcinação (APÉNDICE).

Prepararam-se sete amostras de referência, seguindo-se o procedimento de extração descrito. Adicionaram-se alíquotas das soluções de referência I ou II dos elementos refratários, após a adição da solução de ferro. A Tabela I apresenta a composição das amostras de referência preparadas; as de números 1 a 4 foram compostas duas vezes cada uma.

Preparação do Resíduo da Extração para a Análise Espectrográfica:

- Pesa-se o resíduo obtido no procedimento da extração, transfere-se para um almofariz de ágata e completa-se a massa para 20 mg com Fe₂O₃.
- Adicionam-se 20 mg de grafita em pó, preparada previamente com 8% de NaF e 20 μg/g de Pd.
- Homogeneiza-se a mistura cuidadosamente.
- Pesam-se três quotas de 10 mg desse mistura e transfore-se cada uma para o eletrodo de grafita utilizado para a análise espectrográfica (Tabela II).

Tabela 1

Composição das Amostras de Referência, em μg/g, com Relação à Massa de Urânio

Elemento	Nb	Hf	Мо	Та	Ti	٧	w	Z r
amostra 1	20	20	10	20	10	10	20	40
amostra 2	10	10	5	10	5	5	10	20
amostra 3	3,0	3,0	1,5	3,0	1,5	1,5	3,0	6,0
amostra 4	1,0	1,0	0,50	1,0	0,50	0,50	1,0	2,0
amostra 5	0,50	0,50	0,25	0,50	0,25	0,25	0,50	1,0
amostra 6	0,20	0,20	0,10	0,20	0,10	0,10	0,20	0,40
amostra 7	0,10	0,10	0,050	0,10	0,050	0,050	0,10	0,20

Condições Experimentais Utilizadas para a Determinação Espectrográfica dos Elementos Nb, Hf, Mo, Ta, Ti, V, W e Zr, Previamente Extraídos do Urânio e Concentrados em uma Matriz de Óxido de Ferro

Tabela II

Espectrógrafo de Emissão	Montagem Ebert, Modelo Mark IV da Jarrell- Ash Co.
Rede de Difração	590 linhas/milímetro.
Largura da Fenda	10μ
Transmitância do Filtro Óptico	27,7%.
Região Registrada de Comprimento de Onda	235 a 362 nm, 2ª ordem do espectro.
Distância entre os eletrodos ("gap")	4 mm.
Eletrodos	Anodo: AGKSP-L 4030
	Catodo: barra de grafita (ACKSP-L 3803) com 3 mm de ϕ e 4 cm de comprimento.
	Pedestal: AGKSP-L 3919
	Todos da National Carbon Co.
Carga	10 mg da mistura (1:1, m/m) entre amostra proveniente da extração e grafita contendo 8%
	de NaF e 200µg/g de Pd.
Corrente	12A, arco dc, estabilizado em 230 V.
Pré-arco	0 segundo.
Tempo de Exposição	75 segundos.
Emulsão Fotográfica	SA-I (Kodak).
Revelação	3 minutos, 18°C, revelador D-19 da Eastman Kodak.
Microfotômetro Comparador Digital	Modelo 23-110, Jarrell-Ash Co.

Condições Experimentais para a Determinação Espectrográfica

As condições experimentais estabelecidas para a análise espectrográfica estão resumidas na Tabela II.

Precisão do Método

Para o cálculo do desvio padrão relativo de cada elemento, preparou-se a amostra de referência nº 3 outras três vezes. O composto de urânio de partida foi o U₃O₈ da Johnson-Matthey. Foram feitas três determinações espectrográficas para cada amostra, resultando, portanto, um total de nove medidas. A partir dos valores nominais da amostra de referência nº 3 e dos valores médios encontrados nas nove determinações, calcularam-se os erros relativos correspondentes.

Os resultados estão na Tabela IV.

Resultados e Discussão

Construíram-se as curvas analíticas representando-se os logarítmos das razões de intensidades entre a linha espectral referente ao elemento refratário e uma linha do Pd (padrão interno) versus os logarítmos dos teores desse elemento em Fe₂O₃ (Figuras 1, 2, e 3). Para os elementos Ta e W não se usou padrão interno. A conversão do teor do elemento em matriz de Fe₂O₃ (a) para a matriz de U (b), partindo-se de 10 g de U e completando-se a massa do resíduo a 20 mg de Fe₂O₃, é dada pela relação:

$$b = \frac{a}{500} \tag{1}$$

As linhas espectrais utilizadas e os intervalos de determinação das impurezas, em relação à massa de U, abrangidos pelas curvas analíticas, estão na Tabela III. Essas faixas analíticas podem ser modificadas, conforme a combinação da massa de partida do composto de urânio com a massa final do óxido de ferro. Por exemplo, partindo-se dos mesmos 10 g de urânio, recolhendo-se as impurezas em 5 mg de Fe₂O₃ e fazendo-se uma única excitação espetrográfica do material, os limites analíticos serão quatro vezes menores

As curvas analíticas para os elementos Zr e Ti foram corrigidas em relação aos teores residuais constatados no U₃O₈ utilizado para a preparação das amostras de referência (APÉNDICE).

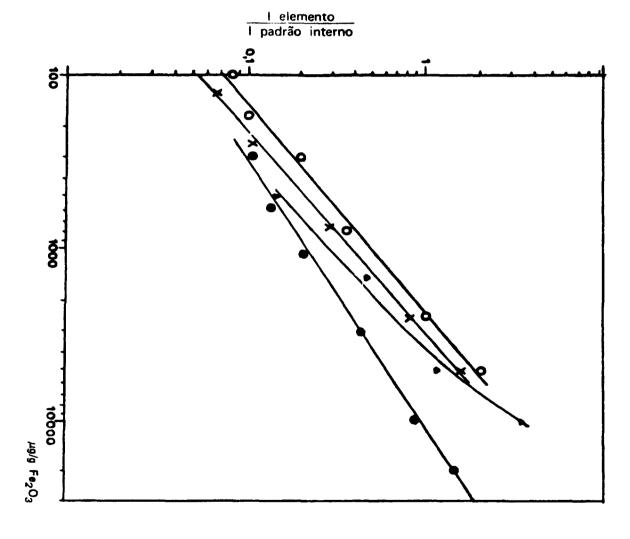
A Tabela IV apresenta os valores do desvio padrão relativo e do erro relativo do método proposto (englobando o procedimento de extração e a determinação espectrográfica). Pela análise do $U_3\,O_8$ puro da Johnson-Matthey, contratou-se teores residuais de Nb(0,24 μ g/g), Ti(0,12 μ g/g, por extrapolação) e Zr(1,7 μ g/g); esses valores foram acrescentados aos valores nominais da amostra de referência nº 3.

Verifica-se pela Tabela IV que para os elementos Ta e W os erros relativos foram elevados, assim como o desvio padrão relativo para o Ta. Na faixa analítica estudada, todavia, um erro relativo elevado não é muito significativo. Para os outros elementos, os desvios padrões relativos estão abaixo de 20%, valor aceitável para uma análise espectrográfica por arco de corrente contínua, considerando-se, além do mais, o emprego de um procedimento de extração por solventes.

No Laboratório de Espectrografia do IPEN – CNEN/SP determinam-se o molibdênio e o vanádio por excitação direta da matriz de urânio, utilizando-se o método da destilação fracionada. O molibdênio, por exemplo, tem sido determinado com auxílio do carreador AgCl na proporção de 6% em massa com relação à matriz U₃O₈ mas sua volatilização é irregular e o limite de determinação semi-quantitativa é de 3μg/g. O vanádio é determinado com o emprego de 6% de NaF como carreador; a sua precisão analítica é maior do que para o molibdênio mas o seu limite de determinação também é de 3μg/g.

nas Espectrais e Faixa Analítica para a Determinação Espectrográfica de Nb. Hf. Mo. Ta

Linhas Espectrais e Faixa Analítica para a Determinação Espectrográfica de Nb, Hf, Mo, Ta, Ti, V, W e Zr, a Partir de 10 g de U e Recolhendo-se as Impurezas em 20 mg de Fe₂O₃


Tabela III

Razões das Linhas Espectrais	Faixa de Determinação (µg/g em U)		
Nb 316,340 nm / Pd 324,270 nm	0,10 - 20		
Hf 286,170 nm / Pd 324,270 nm	0,20 - 20		
Mo 281,615 nm / Pd 324,270 nm	0,25 - 10		
Ta 296,332 nm	1,0 – 20		
Ti 325,291 nm / Pd 324,270 nm	0,16 - 10		
V 313,027 nm / Pd 324,270 nm	0,25 - 10		
W 265,654 nm	1,0 – 20		
Zr 312,976 nm / Pd 324,270 nm	0,60 - 40		

Tabela IV

Desvios Padrões Relativos e Erros Relativos Calculados Sobre os Resultados de Nove Determinações (três amostras de referência de mesmo valor nominal submetidas ao procedimento de extração)

Elemento	Valor Nominal (adicionado) (µg/g U)	Valor Médio (obtido) (μg/g U)	Desvio Padrão Relativo (%)	Erro Relativo	
Nb	3,24	3,76	14	+ 16	
Hf	3,00	3,48	14	+ 16	
Мо	1,50	1,71	18	+ 14	
Ta	3,00	5,00	37	+ 67	
Ti	1,62	1,43	5,7	- 12	
V	1,50	1,65	3,7	+ 10	
W	3,00	4,37	7,9	+ 46	
Zr	7,70	7,52	17	- 2,3	

Análise de Elementos Refratários em Compostos de Urânio. Curvas Analíticas pera os Elementos Titanio, Zircônio, Tungstênio e Vanádio em Óxido de Ferro III. Simbologia e Linhas Espectrais Utilizadas:

Ti 325,291 nm Pd 324,270 nm

Zr 312,976 nm Pr 324,270 nm

W 265,654 nm

V 313,027 nm Pd 324,270 nm

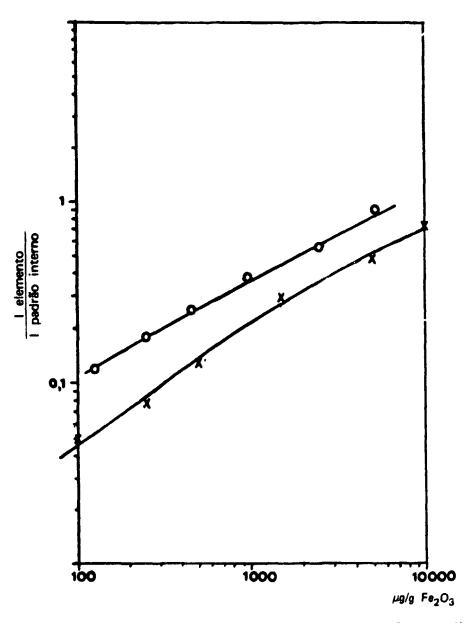


Figura 2 — Análise de Elementos Refratários em Compostos de Urânio. Curvas Analíticas para os Elementos Molibdênio e Háfnio em Óxido de Ferro III. Simbologia e Linhas Espectrais Utilizadas:

Mo 281,615 nm Pd 324,270 nm

x Hf 286,170 nm Pd 324,270 nm

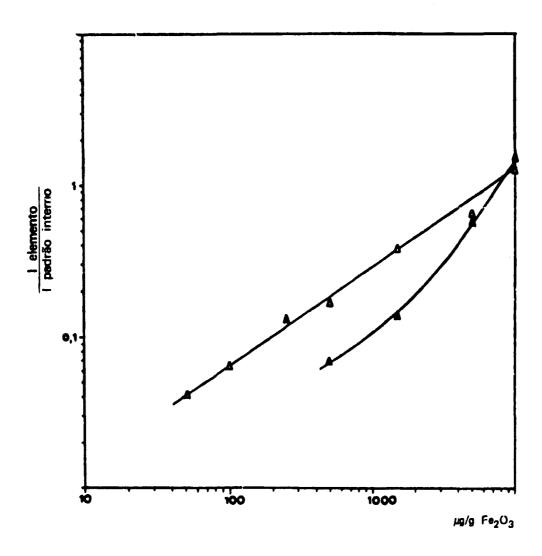


Figura 3 — Análise de Elementos Refratários em Compostos de Urânio. Curvas Analíticas para os Elementos Nióbio e Tântalo em Óxido de Ferro III. Simbologia e Linhas Espectrais Utilizados:

A Nb 316,340 nm Pd 324,270 nm

▲ Ta 296,332 nm

Os resultados de uma determinação direta de elementos refratários em ema matriz também refratária e de espectro complexo, ficam, em geral, comprometidos pela interferência espectral devido a essa matriz. Além disso, os espectros referentes a muitas impurezas refratárias são carentes de linhas sensíveis. Pelo método descrito, com a separação química prévia das impurezas, esses dois problemas são contornados. O óxido de ferro utilizado como matriz espectrográfica também produz um espectro rico em linhas mas, de qualquer forma, muito mais simples que o do urânio. Além disso, a inexistência de linhas muito sensíveis, referentes a algumas impurezas estudadas, é compensada pelo fator de enriquecimento prévio; assim, as faixas de determinação dos elementos podem ser manipuladas em função da massa inicial de urânio e da massa final de óxido de ferro.

O procedimento apresentado é muito trabalhoso e, além dos cuidados inerentes a qualquer processo de extração, neste trabalho a temperatura é controlada a valores inferiores a 5°C durante praticamente toda a sua execução Todavia, os limites de determinação mais baixos e a melhor precisão analítica conferem vantagens ao presente método quando comparado com a excitação direta da matriz com carreador.

O emprego de centelha i létrica para a excitação da amostra aumenta a reprodutibilidade analítica e minimiza a interferência causada por pequenas quantidades de urânio que podem ser arrastadas para a fase orgânica, como descrito pela ASTM^(2,3). Porém, nesse caso, trabalha-se com quantidades muito pequenas de soluções e isso implica em um manuseio extremamente cuidadoso; solubiliza-se o resíduo com 5 ml de ácido clorídrico e 1 ml de ácido fluorídrico concentrados e evapora-se a 0,5 ± 0,2 ml; essa solução é colocada no eletrodo de disco rotatório. A técnica por centelha não é muito sensível, e os limites e a precisão descritos pela ASTM^(2,3) não são significativamente melhores do que os que se obtivera:n por excitação com arco d.c.

O emprego de uma massa final fixa de óxido de ferro, completando-se a massa do resíduo obtido na extração, é uma estratégia utilizada para evitar erros caso a amostra contenha muito ferro como impureza. Esse artifício mostrou-se muito útil em análises posteriores de urânio metálico, cujo teor de ferro presente nas amostras era da ordem de 1.000µg/g.

APÉNDICE

Em uma avaliação de impurezas residuais no UO₂ belga empregado determinou-se 0,4µg/g de Mo e detectou-se os elementos Zr e Ti. Com o propósito de tornar viável a determinação de molibdênio a teores <0,4µg/g, procedeu-se à purificação de uma quantidade de UO₂ por um procedimento de extração semelhante ao descrito, exceto por alguns ajustes posteriores.

A solução de sulfato de uranilo purificado, resultante das extrações, é seca e calcinada a 700°C por 2 horas. Coloca-se novamente em solução, com concentração aproximada de 50g/ ℓ de U em água e adiciona-se 3% (m/m de U) de EDTA. O procedimento da precipitação do diuranato de amônio(DUA) nesta solução, descrito resumidamente a seguir, foi baseado em Abrão⁽¹⁾ e Lima⁽¹⁶⁾.

Coloca-se em um bequer de 2 litros, 350 ml de NH₄ OH 1N e aquece-se a 40°C. A essa solução, adicionam-se, simultaneamente, as soluções de 50 g/g de U e NH₄ OH concentrado, empregando-se duas burntas. Mantam-se um pH6, aproximadamente, pela medida constante com um pHmetro. Após o término da adição das soluções, agita-se durante meia hora, decanta-se por mais meia hora, filtra-se em filtro de Buchner e Inva-se com solução a 2% de nitrato de amônio. Seca-se e calcina-se o DUA a 900°C durante 2 horas.

A avaliação das impurezas nesse U_3O_8 obtido indicou, ainda, a presença de traços de Zr e de Ti, mas não a de Mo.

AGRADECIMENTOS

Os autores agradecem ao Dr. Spero Penha Morato, chefe do Departamento de Processos Especiais pelo apoio na realização deste trabalho, que foi financiado pela Comissão Nacional de Energia Nuclear.

REFERÊNCIAS BIBLIOGRÁFICAS

- ABRÃO, A.; ARAÚJO, J. A.; FRANÇA JR., J. M. Precipitação reversa de diuranato de amônio a partir de soluções de sulfato de uranilo: descontaminação do ion sulfato. São Paulo, Instituto de Energia Atômica, 1972. (IEA-Pub-278).
- AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard methods for chemical, mass spectrometric analysis of nuclear-grade uranium dioxide powders and pellets. 1983 (ASTM-C696).
 In: 1983 ANNUAL book of ASTM standards, section 12: nuclear, solar, and geothermal energy, Volume 12.01, p. 167-70.
- AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard methods for chemical, mass spectrometric nuclear and radiochemical analysis of uranium hexafluoride. 1983. (ASTM-C-761).
 In: 1983 ANNUAL book of ASTM standards, section 12: nuclear, solar, and geothermal energy, Volume 12.01, p. 435-41.
- AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard methods for spectrographic analysis of uranium oxide U₃O₈ by gallium oxide-carrier technique. 1983. (ANSI/ASTM-E-402).
 In: 1983 ANNUAL book of ASTM standards, section 12: nuclear, solar, and geothermal energy, Volume 12.02, p. 173-79.
- ARTAUD, J. L'analyse et le controle analytique en energie nucleaire. Application à l'analyse de l'uranium. Energ. Nucl., Paris, <u>2</u> (2):93-104, 1960.
- 6. ATWELL, M. G. & HELLER, H. A. The determination of microquantities of hafnium and zirconium in uranium and thorium materials. Cincinnati, Ohio, National Lead Co. 1961. (TID-11209).
- BURNETT, H. M. et alii. Separation and spectrochemical determination of 0,5 to 5 ppm niobium, tantalum and titanium in uranium. Los Alamos, N. M., Los Alamos Scientific Laboratory, 1968. (LA-3985).
- 8. CHEMICAL preparation procedures. In: ANALYTICAL chemistry manual of the feed materials production center. Cincinnati, Ohio, National Lead Company of Ohio, 1964. V.2, 2.1.4.1.1.3. (TID-7022).
- 9. DALE, L. S. Direct carrier distillation procedure for the spectrographic determination of impurities in uranium tetrafluoride. *Appl. Spectrosc.*, 28(6):564-8, 1974.
- DALVI, A. G. I.; DEOGHAR, C. S.: SHESHAGIRI, T. K.; KHALAR, M. S.; JOSHI, B. D. Determination of refractory elements in U₃O₈ by carrier distillation emission spectrography. Talanta, <u>25</u>:865-8, 1978.
- DHUMWAD, R. K. et alii A direct method for the spectrographic determination of impurities of Hf in U₃O₈ by carrier-distillation technique. Bombay, India, Bhabha Atomic Research Centre, 1980. (BARC-1050).

- FELDMAN, C. Survey of sensitivity limits for the spectrographic determination of trace impurities in U₃O₈. Oak Ridge, Oak Ridge National Lab., 1966. (ORNL-TM-1590).
- 13. GOMES, R. P.; LORDELLO, A. R.; ABRÃO, A. Estudo da eficiência de AgCl, In₂O₃, Ga₂O₃, NaF, LiF e SrF₂ como carreadores espectrográficos na análise quantitativa de dezoito elementos micro-constituintes em urânio. São Paulo, Instituto de Energia Atômica, 1977. (IEA-Pub-467).
- HERES, A. Determination of Sn, Mo, Nb, Ta, Ti, W, V and Zr, impurities in uranium Separation of U by cupferron and spectrographic determination in a iron matrix. CEA, Centre d'Estudes Nucleaires de Cadarache, France 1973. (CEA-R-4433).
- 15. KING, H. G. In-situ caracterization of common impurities in uranium metal by spark spectrochemistry.

 Oak Ridge, Tnn. Y-12 Plant, 1974. (Y-1937).
- 16. LIMA, F. W. & ABRÃO, A. Produção de compostos de urânio atomicamente puros no Instituto de Energia Atômica. São Paulo, Instituto de Energia Atômica, 1961. p.45. (IEA-Pub-42).
- 17. MOORE, F. L. Separation of zirconium from other elements by liquid-liquid extration. *Anal. Chem.*, 28(6):997-1001, 1956.
- 18 MORRIS, W. F. Determination of trace impurities in uranium. metal and uranium compounds. In: HARRAR, J. E. ed. Analytical chemistry quarterly report, April through June, 1970. Livermore, Ca., Lawrence Lab., 1970. (UCID-15644-70-2).
- 19 MUZIK, R. J. & VITA, O. A. Spectrographic microdetermination of refractory elements in uranium. Anal. Chim. Acta, 57:331-40, 1971.
- NACHTRIEB, N. H. Principles and practice of spectrochemical analysis. New York, McGraw-Hill, 1950. p. 252-62.
- 21. PEPPER. C. E. A review of spectrochemical emission methods and associated problems for the determination of impurities in nuclear grade uranium. Cincinnati, National Lead Co., 1967. (NLCO-999).
- 22. PEPPER, C. E. & BLANK, G. R. Spectrochemical determination of 1 ppm of Ta and W in U₃O₈ using a carrier distillation method. Cincinnati, Ohio, National Lead Co., 1973. (NLCO-1105).
- 23. PODOVIK, B. & SPENKO, M. Direct spectrographic determination of impurities in uranium tetrafluoride. *Anal. Chim. Acta*, 34:294-301, 1966.
- RODDEN, C. J. Determination of trace quantities of Ga, Mo, Nb, Pd, Ta, Ti, V, W and Zr in uranium compounds by cupferron extraction. In: CURRENT procedures for the analysis of UO₃, UF₄ and UF₆. Oak Ridge Tnn., Technical Information Division, 1956. p. 110-4 (TID-7003).
- SPECTROCHEMICAL determination of refractory elements in uranium bearing materials. In: SPEER,
 M. A. & SPRINGATE, R. T. eds. Specifications testing manual. Section 6, Spectrochemical uranium samples. Weldon Spring, Ma, Mallinkrodt Chemical Works, 1966. p. 375-85. (MCW-1507).
- SPECTROCHEMICAL procedures. In: ANALYTICAL chemistry manual of the feed materials production center. Cincinnati, Ohio. National Lead Company, 1964. V.2, 2.1.5.1.1.5-8 (TID-7022).
- 27. THE SPECTROGRAPHIC determination (concentration) of V, Ti, Sn, Zr and Mo in uranium metal, uranium hexafluoride and uranium tetrafluoride. Harwell, UKAEA, Atomic Energy Research Establishment 1955. (SCS-M-396).

- 28. VITA, O. A. The separation and microanalysis of Nb, Ta, Ti, V and Er. Application to uranium compounds. Piketon, Ohio, Goodyea: Atomic, 1966. (GAT-524).
- 29. YUSTES, H. G. & NINTZEL, I. V. A carrier layer distillation methods in uranium. In: ANNUAL progress report for the period July 1969 June 1970. New Jersey, New Brunswick Lab., 1971 p. 53 (NBL-258).