"DEVELOPMENT OF A ROUTINE METHOD FOR THE DETERMINATION OF MEAN CRYSTALLITE DIMENSIONS IN NUCLEAR MATERIALS BY X RAY DIFFRACTION LINE BROADENING AN APPLIGATION EXAMPLE USING $\mathrm{U}_{3} \mathrm{O}_{\mathrm{a}}$ MICROSPHERES

K Imakurna I M Sato J Cratalia Neto and M I Costa

"DEVELOPMENT OF A ROUTINE METHOD FOR THE DETERMINATION OF MEAN CRYSTALLITE DIMENSIONS IN NUCLEAR MATERIALS BY X RAY DIFFRACTION LINE BROADENING" AN APPLICATION EXAMPLE USING $U_{3} \mathrm{O}_{g}$ MiCROSPHERES

COORDENADORIA DE ENGENHAAIA OUIMICA
 (CEO)

Eng ${ }^{\text {O }}$ Robarte N Jafat - Praidanta
 Prof Dr Emillo Mattar - Vice-Presidente
 Prof Dr , Joie Ausuita Martins
 Prof Dr Milton Cmmpos
 Enspr Haltao Modetio de Cotre

SUPERINTENDENTE

Prot Dr Rómula Rebaro Pietent

INSTITUTD DE ENERGIA ATONICA
Cans Postal 11049 (Pinherrou)
Cidede Unmirytiria Armando de Salles Oilviirs
SKO PAULO - GRASH2
 correcio ou mudança

DEVELOPMENT OF A ROUTINE METHOD FOR THE DETERMINATION Of MEAN CAYSTALLITE DIMENSIONS IN NUCLEAR MATERIALS BY X RAY DIFFRACTION LINE BROADENING' AN APPLICATION EXAMPLE USING $\mathrm{U}_{3} \mathrm{O}_{8}$ MIGROSPHERES

K tmakuma I B Sato J Cretella Neto and M I Costa

ABSTRACT

 function of the erystilite bize is discustedt
 upon line brosdentra
linstiumental correction wos parformed with a monocrystalime Si stmple having meari crystallite tite well abduv 13000 太 lefiecked at our Laboratory' improwing the accuracy of enperimantal daza
$K_{\alpha} / K_{Q_{2}}$ doublet correction was handled with the aid of the raodified Aachinger corfection The axact intenguty milation betwean $K_{\alpha_{2}}$ and $K_{\alpha_{1}}$ prakz was determined instead of taking it for granted is 5

The mean erytailite dimengron of $\mathrm{U}_{3} \mathrm{O}_{8}$ was caleulated und the results thow the deppandence of thas paremeter on the quelity of the microspheres

INTAODUCTION

Fission materials usad in the form of coated particles have experienced great advances in the Gas Reactor Technology serving as basis for the development and progress of the HTGR concept ${ }^{\text {(4] }}$

One of the main advantages the use of fuels in the form of particles has brought is the possibility of achieving the highest burn ups reached so far by incorporating moderators tas graphital to the furl However emphasis should be given to the fact that high efficiency of these fuels is primarily due to their structural properties

As pert of lEA s program the CEO (Chembal Engineering Diwision) has been developing a process for ricrospheres production and several batches of $\mathrm{U}_{3} \mathrm{O}_{8}$ and alurmina merospheres tave been prepared already

As the microspheres production depends on several physicoctiomical parameters we focused our attention on one of them namely the mean dimension of the crystalites regions inside the solid whare the unit cell repeats itselt in an almost perfect fashom a puantaty directly related to the feasibility of cotaring microspheres

The mean erystallte siza is an important structural parameter not only where microwheres' production is concerned but is also a meaningful structural parameter of any fuel material and it was the
purpose of our research to establish a fast and efficimit method to dataming it

FUNDAMENTALS

Scherfer ${ }^{\text {(10. }}$ first attempted to determine the influgnce of the crystallite size an \times Riy diffraction peaka broedening and derived a mifhematical expression assuming a cubic crystal structure -known today as the Scharrer equation

$$
\begin{equation*}
\mathrm{D}=\frac{K}{\hat{\beta}_{1 / 2}} \frac{\lambda}{\cos \theta} \tag{1}
\end{equation*}
$$

Assuming Scherrer 5 derivation was not ganeral, Stokes and Wilson ${ }^{11}{ }^{11}$ derived an expression valid for any crystal structure Empioying a refined mathemetical formaliem as wall as untegroted intensities, these authors have nevertheless obtained an oxpression similar to Scherter s, except for the value of \underline{K} a shape constant Scherrer equation halds for $K=88$ uthersos Stokes propond $K=100 \ln$ practicis K is used as go because both works wert carried on assuming the axistence of only one crystalite actuelly one has

In expression ($f 1 \lambda$ is the wavalength of the X Ray radiation $\underline{\theta}$ is the angle where maxumum diffraction oceurs and $\overline{\mathrm{e}} / \mathrm{/2}$ is the half-maximum peak brazdth due only to the crystallite size of the material under irventigation (3)

EXPERIMENTAL PROCEDURE

The expermental procedura mey be divided into four mant parts

- aligmment of the diffrectometer
- uniform semple preparation
- otitamintit of diffraction profiles
- data correction

The alignment of the Gigaku SG 8 diffractometar is dona wecording to its correapondent Rigaku menuat ${ }^{\prime 9}$ ' and deserves hare no further comments

Samples are prepared by pressing $\left\{275\right.$ ton/om ${ }^{2}$ during 3 mirutes in aluminum sample halders As for the soke of compactness 5\% cellulose may be added All smples ar proviousiy prinded in an apats mortar, thus becoming homeganacus and practicidy strain frae

Chainfint of a diffraction profils torrespondent to a particular crystallographic ihkll plana can be achueved by two alternizive procederes

- conventional stanning where the semple is continually rotated around an appropriate Brage angie while the interisity is registered by a plotter on s chart Profilas obtained this way are similar to the one shown in figure 1
- step by step using a step scanning dovich where the intonsity is meaured at several angular poxitions bqually speced by small angle values chinig offoed time interval, say 20 peconds The profiles are simular to the one given in figure 2

In any case the paak obtained has a tertain half-maxmum bradth $\overline{\mathrm{B}}_{1 / 2}$ which is a rasult of three major contributions

> - crystallite mean dimension
> - instrumental effect due to apparatus used
$-K_{\alpha_{1}} / K_{\alpha^{z}}$ doublet overlapi*)

We are intarested only in the effact due to crystallites and therefore wa meed the other two upon $B_{1 / 2}$

Effect (c) as easily eliminated using the Rachinger correctron \{appendix) Y ieiding $\mathbf{8}_{1 / 2}$ the half maximum peak breadth without the influsnce of $K_{\alpha 2}$

We are laft with the problem of eluminating the jnstrumantal affect to be able to caiculate $\beta_{1 / 2}$ Theoreticaly this can be accompished by applyimg expreasish \{1\} to a difirection peak from any matarial possessing infinitely large crystallites as a consequence wa would have B $\rightarrow 0$ Under these conditions the peak breadth would be due solely to instrumantal effect

However an ideal erystal ($\mathrm{D} \rightarrow \infty$) is so far impossible to obtain Many resaarchers have used as stenderd-crystals policrystaline materials having crystallites as large as possible Anyhow they are soldom larger than $1000 \mathrm{~A}\{\mathrm{~B}$)

In the present work we adopted an original solution using a monoerystaline Si semple whose masan crystalite dimension is over $\left.13000 \AA\right|^{* *}$ we were able to got diffraction paals whose half maximum braadth $b_{f / 2}$ may well be considered as being due entirely to the particular apparatus used

It is known that the instrumental effect is a function of the Brage angla is $\mathrm{b}_{1 / 2}=\mathbf{f}\{\mathbf{2 0}\}$ This depandence is determined by obtaming diffraction peaks for several angular positions and plotting it thus constructing characteristic curves for each instrument (fig 3) When investinoting a given matenal ("**) the instrumental effect at the angular positions where the peaks exist may be known by interpolation in the correspondent instrument curve

The correction principle is as follows ' 12)
Figures $4 a \quad 4 b$ and 4 c represent respectively the sample diffraction pesk $\left\{\mathrm{K}_{\alpha^{3}} / \mathrm{K}_{\alpha^{2}}\right.$ doublet effect arready aliminated) the sann diffraction pagk if the diffractometer were ideal only crystalite size effect present and peak breadth due only to instrumental effact

The origins for giz] and hixi) are chosen for convenience but at the same value of 2θ The relation between the three curves is obtarnad by considering the area gizidz on the curve for instrumental brodening the area gizidz is spread out by the function fiyl and at a displacement y the ordinate is the contribution din(x) at the position $x=z+y$ on the $h(x)-c u m p$ Since the ordinates in the two curves are proportional to the paak areas

$$
-\frac{d h(x]}{f(y)}=\frac{g(z) d x}{A}
$$

whers A is the ares of the $f(y)$ curve
With the replacemant $y=x-z$ the ordinate of the h(x) curva is given by

$$
h(x)=\frac{1}{A} \int g(z) f(x z) d z
$$

[^0]
figure 1 - Stripechart recond of the t001\} peak of a $\mathrm{U}_{3} \mathrm{O}_{\mathrm{B}}$ sample $\left\{\mathrm{Cu} \mathrm{K}_{\mathrm{a}}\right.$ radiation scanning speed $\left.1 / 16^{2} / \mathrm{m} / \mathrm{m}\right)$

Figura 2 - Strip-chart rocord of the t001) pak of a $\mathrm{U}_{3} \mathrm{O}_{\mathrm{B}}$ sample tCu K_{a} rediation stop scanming with step width 02° fixed time count 20 seconds)

Figure 3 - Instrumantal correction curves for diffractometors (i) and (II)

Equation (2) indicates that the profile for the sample is a convolution of the functions representing perticle size broadening and instrumental brodening We measure the curves h|x| and giz\} and wish to obtain the particlesize broadening curve fiy) This is not comenient since fiy) is buried inside the convolution antegral By assuming shapes for the three curves, it is possible to use eq (2) to obtain relations between the half meximum breadths of the curves

Assuming the three curves are Gaussan that is $w=$ Wexp $\left\{-k v^{2}\right\}$ it is possible to show that

$$
\beta_{1 / 2}^{2}=B_{1 / 2}^{2}-b_{1 / 2}^{2}
$$

4-APPLICATION OF THE METHOD

The mathod previously deseribed was applied to firmely grinded powder from $U_{3} \mathrm{O}_{8}$ microspheres Figure 5 showa the diffraction profile of $\mathrm{U}_{3} \mathrm{OB}$ for 20° between 10° and 110°

Sever samples were prepared and for each diffraction paaks were obtained using both diffractometers avalable at our Laboratory denoted by (I) and [II) (*)

The microspherits received for anralysis have been proviously size selected with 5 different standerd sieves, with mesh dimensions varying between 0420 and 0063 cm

Samplea rumbered 1 to 5 belong to the same lot and samples numbered 6 and 7 to emother one obtained under different conditions

Semple	Diffractometar I (A)	Diffractorneter II (A)	Average (A)
1	560 ± 28	575 ± 29	567 ± 29
2	592 ± 31	571 ± 29	581 ± 30
3	680 ± 31	598 ± 31	562 ± 31
4	591 ± 31	580 ± 30	587 ± 31
5	601 ± 31	550 ± 31	595 ± 31
6	377 ± 97	388 ± 17	382 ± 17
7	367 ± 16	375 ± 17	371 ± 17

CONCLUSIONS

We have succeseded in extablishing fast and routiraly applizable method for nucles matariai control whenevar structuran par mineters play in important role The determintion of the mean erystalite size by measuring Griges s diffrattion peak breadth was computed using Scherrer equation whose validity has been confirmed by saveral resgarchars (references 13 6,6 7) besides Seherrer hifnself ${ }^{(10}$)

[^1]10011
30°
40°
80
Figure $5-\mathrm{U}_{3} \mathrm{O}_{8}$ diffraction diagram

Figure $\mathrm{f}_{\text {- Percent error vs crystallite size }}$
(b) Stap scenning fixed time count
(b) Conventional scamning scenning speed $1 / 16^{\circ} \mathrm{min}$
(c) Comventional scanning scanning spad $1 / B^{\circ}$ min

Figure 7 - Curve illustrating the principle of Rachinger corraction Contributions by $K_{\alpha_{1}}$ and $K_{\alpha_{2}}$

Our results were obtained with a precision not inferior to omes presented on the most outtanding previous works in this field like (1) thanks to the extremely satistactory perfomence of the apparatus empleyad and the pioneer utilization of a standard crystal whose mean crystallite dimension was well over the ones used by other researchers

As our main obyective was to apply the method in a rather routine fashion we workad out curves in order to optimisa the axperimental procgdure towards obtaining the highest precision within the time available (wheh in our Laboratory is invariably vary scarce) In fig 6 curves show the percent errer as a furction of the erystallite size using three ways of obtaining the diffraction profile Curve a corresponds to a step scanning fixad time count curve th to a conventional scanning sample rotation speed $1 / 16^{\circ} / \mathrm{min}$ curve c to a conventional scanning sample rotation speed $1 / 8^{\circ} / \mathrm{min}$

As the above method was daveloped using $U_{3} O_{8}$ microsphares fragmanted as well as nonfragmented a faw conclusions can be drawn concerning structural properties

- ance we had samples of non fragmented microspheres the mean crystalite size was found to be 584 \& in average independent of the size of the microspheres analysed
- within the same lot there is no evidence of drastic veriations among erystalite tizes for any samples

This suggests that crybtallite sizes are strongly dependent upon conditions under which microspheres are produced

In the future we plan to apply this mathod for microspheres formed under differgnt ahysico chemical process parameters such as temperature column holding time concantration of the chemicals employed etc This will permit us to determine optimum production conditions in order to obtain UO_{2} and $\mathrm{U}_{3} \mathrm{O}_{8}$ microspheres with the highest degree of structural perfection

APPENDIX - The Pachinger Correction

Rachinger s correction is aimed at the separation of the $K_{\alpha 1^{\prime}}<_{\alpha^{2}}$ doublet on diffraction peaks and is based on two assumptions

1 - the peaks due to $K_{\alpha_{1}}$ and $K_{\alpha^{2}}$ are gaometricsily identical
2 - the intensity of the peak due to $K_{\alpha_{2}}$ is ons half of that due to $K_{\alpha \text { 1 }}$
Figure 7 illustrates one application of the methor ustng a Si monocrystaline sample 1111) reflexton considered The dashed outer line is the peak obtained experimontally using unresolved $C_{u} K_{\alpha}$ radlaiod The two internal curves were abtained using Pechingers cortection and represent the peaks dus to $K_{\alpha 1}$ and $K_{\alpha 2}$ separately Δ is the angular separation betwean the peaks maxima mis a suitable number of intervals Thus

$$
\begin{equation*}
I_{1}\left\{\alpha_{1}\right\}=I_{1}-\left.5\right|_{1 m}\left\{\alpha_{1}\right\} \tag{A}
\end{equation*}
$$

In expression (A) the numerical coefficient 5 is a consequence of assumption ${ }^{〔 \mid}$ which does not prowe being absolutely correct mainly because of the alignment of the diffractometer
 where a complete separation of the peaks due to $K_{\alpha_{1}}$ and $K_{\alpha^{2}}$ is possible their maximum heights occuiring at $2 \theta_{\alpha!}=9496^{\circ}$ and $2 \theta_{\alpha 2}=9527^{\circ}$ ifig 8) Under these canditions wa found

$$
\frac{1\left(\left|\alpha_{2}\right|\right.}{\mid\left(\alpha_{1}\right)}=45
$$

When inserted in equation (A) we have

$$
\begin{equation*}
1_{1}\left|\alpha_{1}\right\rangle=I_{1}-45 I_{1 m}\left(\alpha_{1}\right) \tag{B}
\end{equation*}
$$

Expression (B) is a result of a careful use of the Alachinger correction taking into account the type of apparatus empioyed and allowed us to resolve the $K_{\alpha 1} / K_{\alpha^{2}}$ doublet mare precisely

In the case of fig $7 \Delta=08^{\circ}$ and we chose $m=8$ for conventence Tharafore

$$
\begin{aligned}
& l_{0}\left\{\alpha_{1} \mid=I_{0} I_{1}\left\{\alpha_{1}\right\rangle=I_{1} \quad I_{7}\left\{\alpha_{1}\right\rangle=I_{7}\right. \\
& I_{B}\left\{\alpha_{1}\right\rangle=I_{B}-45 I_{0}\left|\alpha_{1}\right\rangle \\
& I_{9}\left\{\alpha_{1} \mid=I_{9}-45 l_{1}\left\{\alpha_{1}\right\}\right. \text { and so an }
\end{aligned}
$$

The ongin is also chosen for convenience at the left hand side and the accuricy is satisfactory from this point to about half way down on the right band arde when fluctuations may occur, the right teil of the curve is graphically complated haying in mind the fact it is symmetrical to the left tall

ACKNONLEOGEMENTS

We wish to express our sincere thanks to Claudio Püshel M Sc responsible for the microspherias production Lab for his unrestricted help in furnishing analysis materiai as well as part of the referance trexts

We thank also Mr JA de Vasconcalos who was vary halpful gathering some of the experimental data and performing the laborious trask of drawing our graphs and figures and Mr Antonio Bolamogle for his interest and skill when typing our manuseripts

RESUME

On mal en relief notrt contribution dans le but d firminer I affer instrumental aussi bran que I offit du widoublat $K_{\text {da }} / K_{\infty} \rho$ than I Alargmament de la ligne

 experimentales

 rapport a la quatite des merrospheres

RESUMO

 dos ract \times tol extabalecuto Tanto on mbtodos por warredure pasco a parso quento por verredura cantinua foram

erigtalios acume de 13000 A tdado esta confirmado em nosso laboritorio melhorando a precisar dos dados日xpersmentals

 qualidade das microesteras

REFERENCES

1 ALEXANDER L The synthess of x ray spectrometer line profiles with application to crystallite size measurements J apof fhys Lancaster Pa 25[2] 155611954

(Ph D Thesss)

3 KLUG H P 8ALEXANDER L E X ray diffraction procedure New York Wilby 1954
4 KAAWCZYNSKt S HYA fasl technology and irfadtation testing semminar held in Auturnn ig73 São Paulo Instituto de Energia Atomica 1973

 procedures New York Wiley 1954 p $49 \uparrow$

6 MURDOCK C L C The resolving power of an occhedral crystal for \times tays Phys Rev Minneapolis
Minn 2 ger 313041928
7 PATTERSON A L The determination of the size and shape of crystal particles by x rays Phys Rev Minneapolis Minn 2 ser 498941936
B RAU R C Routine crystallite size determination by x ray diffraction lime broadening Adv X ray Ahalysts New York 5104161961
9 RIGAKU CORPORATION Tokyo instruction mammal on ME2f0 Ad2 ntn
10 SCHERRER P Gorthger Nachitchten 206 (tg18) apud KLUG H P \& ALEXANDER LE X ray diffraction procedures New York Wrley 1954 p 491
11 STOKES A A \& WILSON A JC A method of calculating the integral breadths of Debve Scherrer lines Proc Comb phH Soc London 38 313221942
${ }^{1} 2$ twARFEN B E X ray diffraction Reading Mass Addison Wesley 1968

[^0]: () We are eansidering the matarial as strainfrea although the ectual profils is somewhat influencodiby the oxistence of internal atrasegs in our case stran is nagigible if not detolutely non existent
 1 J As experimentaly velified by ubing adiftraction apparaiui having a hrghly collimated monochromator designed by and built by I E A; X Ray group tgee ret 2)
 [*** For ath substance dilfraction paks ocent at charactaristic angulat potituons

[^1]: (*) The angular position for the $\mathrm{U}_{3} \mathrm{O}_{\mathrm{B}}\left\{001\right.$ \} diffraction paak in epproximately $20=2141^{\circ}$ and under thu geornetrical

