OLANDIR VERCINO CORREA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 61
  • Artigo IPEN-doc 28071
    Structural characterization, global and local electrochemical activity of electroless Ni–P-multiwalled carbon nanotube composite coatings on pipeline steel
    2021 - OLIVEIRA, MARA C.L. de; CORREA, OLANDIR V.; SILVA, REJANE M.P. da; LIMA, NELSON B. de; OLIVEIRA, JEFFERSON T.D. de; OLIVEIRA, LEANDRO A. de; ANTUNES, RENATO A.
    In this work, composite Ni–P-multiwalled carbon nanotube films were produced by electroless deposition. The main goal was to investigate the influence of multiwalled carbon nanotube loading on the local electrochemical behavior of the composite films, as probed by scanning electrochemical microscopy (SECM). The coatings were also characterized with respect to their crystalline structure, surface, and cross-section morphologies. Adhesion strength was examined by scratch tests. The global electrochemical behavior was evaluated by potentiodynamic polarization. The local electrochemical activity was investigated by probing the Fe2+ oxidation in the surface generation/tip collection mode of the SECM. The results revealed that multiwalled carbon nanotubes increased the adhesion strength and reduced the electrochemical activity on the surface of the coated samples.
  • Artigo IPEN-doc 26995
    Coatings for safe long term wet storage of spent Al-clad research reactor fuels
    2015 - RAMANATHAN, L.V.; FERNANDES, S.M.C.; CORREA, O.V.; SOUZA, J.A. de; ANTUNES, R.A.; OLIVEIRA, M.C.L. de
    Pitting corrosion of the aluminium cladding of spent research reactor (RR) fuels in wet storage has been observed and the use of conversion coatings to protect the cladding was proposed. A coating prepared by conventional chemical processing as opposed to electrochemical processing is the only option due to constraints related to the shape of the fuel and its high radioactivity. Hence, hydrotalcite (HTC) and boehmite were considered. This paper presents: (a) preparation of hydrotalcite (HTC) coatings from different baths followed by post-coating treatments; (b) corrosion behavior of HTC coated AA 6061 alloy; (c) results of field studies in which uncoated and HTC coated AA 6061 alloy coupons and plates, the latter assembled as a dummy fuel element, were exposed to the IEA-R1 reactor spent fuel basin for extended periods. The laboratory and field tests revealed marked improvements in the corrosion resistance of HTC coated specimens, coupons and plates. The mechanism of corrosion protection is presented.
  • Artigo IPEN-doc 24819
    Influence of the tungsten content on surface properties of electroless Ni-W-P coatings
    2018 - OLIVEIRA, MARA C.L. de; CORREA, OLANDIR V.; ETT, BARDIA; SAYEG, ISAAC J.; LIMA, NELSON B. de; ANTUNES, RENATO A.
    Ternary Ni-W-P films were produced by electroless deposition using baths with different tungsten concentrations. After deposition, the coated surfaces were annealed at 400°C for 1h. Surface morphology and film composition in the as-plated condition were assessed by SEM and EDS analyses, respectively. The crystalline phases after annealing were investigated by X-ray diffraction (XRD). Nanoindentation tests were performed to assess the mechanical properties of the deposited films. Surface roughness was determined by confocal laser scanning microscopy (CLSM). Friction coefficient was evaluated by reciprocating were tests in a nanotribometer. The corrosion behavior was evaluated by potentiodynamic polarization curves. The results showed that the surface morphology, crystallization behavior and corrosion resistance were affected by the tungsten content in the film. The best corrosion performance was obtained for the ternary films after annealing. Hardness, surface roughness and friction coefficient were dependent of the tungsten concentration in the film.
  • Artigo IPEN-doc 23482
    High temperature erosion-oxidation resistance of thermally sprayed nanostructured Cr3C2-25(Ni-20Cr) coatings
    2017 - CUNHA, CECILIO A. da; CORREA, OLANDIR V.; SAYEG, ISAAC J.; RAMANATHAN, LALGUDI V.
    This study reports the high temperature erosion-oxidation (E-O) behavior of conventional and nanostructured Cr3C2-25(Ni-20Cr) coatings prepared by high velocity oxygen fuel (HVOF) spraying. As-received and nanostructured Cr3C2-25(Ni-20Cr) powders with mean crystallite sizes of 145 nm and 50 nm respectively, were used to prepare 120 - 200 μm thick coatings on AISI 310 samples. The E-O behavior of the coatings prepared with the as-received (AR) and nanostructured (NS) powders was determined as weight change in a custom designed rig at room temperature, 450, 700 and 800 ºC. The Vickers microhardness, Young’s Modulus and fracture toughness of the AR and NS coatings were determined, and the NS coatings exhibited higher values compared with the AR coatings. The E-O resistance of the NS coating was higher than that of AR coating at all temperatures, and particularly at 800 ºC. The increase in E-O resistance of the NS coatings is due to its superior mechanical properties as well as to the presence of some heterogeneities in the AR coatings. The E-O mechanisms of both types of the coatings are discussed, with special attention to that at high temperatures. The results suggest that at 800 ºC the E-O process is controlled by erosion of the oxide.
  • Artigo IPEN-doc 23403
    Coatings to protect spent aluminium-clad research reactor fuel during extended wet storage
    2017 - FERNANDES, S.M.C.; CORREA, O.V.; SOUZA, J.A. de; RAMANATHAN, L.V.; ANTUNES, R.A.; OLIVEIRA, M.C.L. de
    Conversion coatings have been used to protect aluminium surfaces from corroding. Hence use of this type of coating was considered to protect the aluminium cladding of spent research reactor fuels during extended wet storage. A conventional chemical process, as opposed to an electrochemical process, is preferred due to the shape of the fuel and its high radioactivity. In this context hydrotalcite (HTC) and boehmite coatings were considered. This paper presents the results of further development of HTC coatings, from the stand point of eventually being able to coat highly radioactive spent fuels using remote handling equipment. More specifically: (a) preparation of HTC coatings from different baths on AA 6061 alloy surfaces that were given pre-treatments to simulate spent fuel surfaces; (b) characteristics of the HTC coatings as a function of bath temperature; (c) corrosion behaviour of HTC coated AA 6061 alloy; (d) results of field studies in which dummy fuel elements, consisting of Al alloy plates coated with HTC from different baths (with or without post coating treatments), were immersed in the IEA-R1 reactor’s spent fuel basin for periods of up to 2 years. This study demonstrates that Al surfaces can be coated with HTC using an allroom temperature process. The field tests revealed marked increase in corrosion resistance of HTC coated plates. The mechanism of corrosion protection is discussed and a mock-up arrangement to remotely handle dummy-fuel elements to pre-treat, coat with HTC and post-treat is presented.
  • Artigo IPEN-doc 23674
    Hydrotalcite coatings to protect spent sluminum-clad nuclear fuels during long term wet storage
    2015 - FERNANDES, S.M.C.; CORREA, O.V.; SOUZA, J.A. de; ANTUNES, R.A.; OLIVEIRA, M.C.L. de; RAMANATHAN, L.V.
    Pitting corrosion of the aluminium cladding of spent research reactor (RR) fuels in wet storage has been reported and attributed to synergistic influence of certain water parameters. Hence, use of conversion coatings to protect spent Al-clad RR fuel during long term wet storage was proposed. The objective was to develop a coating using a conventional chemical process as opposed to an electrochemical process due to constraints related to the shape of the fuel and its high radioactivity. In this context hydrotalcite (HTC) and boehmite were considered. This paper presents: (a) preparation of boehmite and hydrotalcite (HTC) coatings from different baths followed by post-coating treatments; (b) corrosion behavior of coated AA 6061 alloy; (c) results of field studies in which uncoated and coated AA 6061 alloy coupons and plates, the latter assembled as a dummy fuel element, were exposed to the IEA-R1 reactor spent fuel basin for periods of up to 14 months. The laboratory tests revealed marked increase in corrosion resistance of HTC coated specimens. In field tests the HTC coated coupons and plates did not reveal any pits. The mechanism of corrosion protection is presented.
  • Artigo IPEN-doc 23608
    Preparation and characterization of hydrotalcite coatings to protect aluminium alloys
    2016 - FERNANDES, S.M.C.; CORREA, O.V.; SOUZA, J.A.; ANTUNES, R.A.; LIMA, N.B. de; RAMANATHAN, L.V.
    Pitting corrosion of the aluminium alloy cladding of spent research reactor fuels during wet storage is the main form of degradation. To prevent this, hydrotalcite (HTC) based coatings were proposed. This paper presents the effect of chemical bath parameters on the microstructure of HTC coatings and the corrosion behavior of HTC coated AA 6061 specimens. The HTC coating formed at 98 °C from nitrate baths and referred to as HT-HTC was homogeneous and consisted of intersecting blade-like crystallites. Electrochemical tests revealed that HT-HTC coated specimens that were treated in a cerium salt solution were the most resistant to corrosion. Field tests in which un-coated and HTC coated AA 6061 alloy coupons as well as full-size plates were exposed to the IEA-R1 reactor’s spent fuel basin for 23 months corroborated the high corrosion resistance imparted by the HT-HTC + Ce coating. The mechanism by which the HTC coating and cerium protect the Al alloy is discussed.
  • Artigo IPEN-doc 23601
    Efeito do revestimento a base de conversão a base de cerio sobre o comportamento de corrosão da liga de magnesio AZ91D
    2016 - FERREIRA, RAFAEL L.E.; CORREA, OLANDIR V.; ANTUNES, RENATO A.
    Este trabalho teve como objetivo avaliar o efeito de revestimentos de conversão à base de cério sobre o comportamento de corrosão da liga de magnésio AZ91D em solução de cloreto de sódio. A liga foi utilizada na condição bruta de fusão. Diferentes condições de formação dos revestimentos de conversão foram testadas, variando-se o tempo de tratamento. Foi utilizado o nitrato de cério como composto formador do revestimento. A morfologia dos filmes foi avaliada por microscopia eletrônica de varredura e sua composição por espectroscopia de energia dispersiva por raios-X (EDS). O comportamento de corrosão foi avaliado por espectroscopia de impedância eletroquímica e polarização pontenciodinâmica. Os resultados obtidos mostraram que houve uma dependência do comportamento eletroquímico com a morfologia da camada de conversão, a qual foi dependente do tempo de tratamento.
  • Artigo IPEN-doc 22600
    Development of electrodeposited Fe-Cr-P amorphous metallic alloys
    1999 - KUNIOSHI, C.T.; CORREA, O.V.; LIMA, N.B. de; RAMANATHAN, L.V.
  • Artigo IPEN-doc 22561