NIKLAUS URSUS WETTER

Resumo

Niklaus Ursus Wetter holds a BA in Physics from the Eidgenössische Technische Hochschule Zürich - ETH (1988 - Switzerland) and a Ph.D. in Nuclear Technology from the Institute for Energy and Nuclear Research (1993). He is currently a senior researcher at the National Nuclear Energy Commission at IPEN / SP and a postgraduate professor at the University of São Paulo ? USP, where he regularly teaches a subject. From 2009 to 2013 he was deputy manager of the Center for Lasers and Applications at IPEN / SP. From 2013 to 2018 he held the position of manager of the Center for Lasers and Applications at IPEN / SP. From 2014 to 2020 he held the position of CEO of FAFITPE, IPEN's Foundation for Support and Promotion of Technological Innovation in Research and Education. Since 2019 he has held the position of Deputy Director of Research and Internationalization Manager at IPEN. As manager of Internationalization, he has so far implemented 14 bilateral agreements with universities and institutes around the world, including the Battelle Energy Alliance, which encompasses eight of the largest federal research institutions in the US. In 2018 he was responsible for organizing the André Swieca Summer School and the São Paulo School of Advanced Science FAPESP "Laserfrontiers.com" with 141 students, 40 of whom came from outside Latin America. He specializes in laser development and operates in the main segments: Diode lasers, waveguides, solid state lasers, laser applications in life sciences, lasers in nuclear applications, optical spectroscopy and materials for laser media in general. Since 2008 he has been developing light sources in disordered materials, or "Random Lasers", for the purpose of applications in optical devices. In 2017, he acquired, through a FAPESP project, a Raman-TERS (AFM) multiuser equipment with STM and SNOM, focused on measurements and development of nanomaterials. He has 4 patent letters and 7 applications in total, 190 international articles with over 2000 citations and an h factor of 26 (Scopus). (Text obtained from the Currículo Lattes on October 14th 2021)


Niklaus Ursus Wetter é bacharel em Física pela Eidgenössische Technische Hochschule Zürich - ETH (1988 - Suíça) e Doutor em Tecnologia Nuclear pelo Instituto de Pesquisas Energéticas e Nucleares (1993). Atualmente é pesquisador titular da Comissão Nacional de Energia Nuclear no IPEN/SP-USP e docente de pós-graduação da Universidade de São Paulo ? USP, onde ministra regularmente uma disciplina. De 2009 a 2013 foi gerente adjunto do Centro de Lasers e Aplicações do IPEN/SP. De 2013 até 2018 ocupou o cargo de gerente do Centro de Lasers e Aplicações do IPEN/SP. De 2014 até 2020 ocupou o cargo de diretor-presidente da FAFITPE, Fundação de Apoio e Fomento a Inovação Tecnológica a Pesquisa e ao Ensino do IPEN. Desde 2019 ocupa o cargo de Vice-diretor de Pesquisa e gerente de Internacionalização do IPEN. Na função de gerente da Internacionalização, ele implementou até agora 14 acordos bilaterais com universidades e institutos de toda parte do mundo, entre estes a Battelle Energy Alliance que engloba oito das maiores instituições federais de pesquisa dos EUA. Em 2018 foi o responsável pela organização da Escola de Verão André Swieca e a Escola São Paulo de Ciencia Avançada FAPESP "Laserfrontiers.com" com 141 alunos dos quais 40 de fora da america latina. Foi editor associado das revistas Optics Express e Optical Materials Express e atualmente atua como editor associado da revista Frontiers, especialidade Optical Nanostructures. É especialista em desenvolvimento de lasers e atua nos principais segmentos: Lasers de diodo, Guias de onda, Lasers de estado sólido, Aplicações de lasers nas ciências da vida, Lasers em aplicações nucleares, Espectroscopia ótica e materiais para meios Laser em geral. Desde 2008 desenvolve fontes de luz em materiais desordenados, ou "Lasers Randômicos", para fins de aplicações em dispositivos ópticos. Possui 4 cartas de patente e 7 pedidos no total, 190 artigos internacionais com mais de 2000 citações e fator h de 26 (Scopus). (Texto extraído do Currículo Lattes em 14 out. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • Artigo IPEN-doc 30048
    Micro-Raman spectroscopy identification of hydroxyapatite in dental pulp stem cells
    2023 - SILVA, FLAVIA R.O.; PASCOAL, DIEGO R.C.; BERECZKI, ALLAN; SIPERT, CARLA R.; BRAGA, ROBERTO R.; BELLINI, MARIA H.; SILVA, LUIS F.T.; FREITAS, ANDERSON Z.; WETTER, NIKLAUS U.
    Cell differentiation using calcium phosphate nanoparticles was studied. The hydroxyapatite was internalized in human dental pulp stem cells and characterized by Raman spectroscopy. Raman spectra showed the hydroxyapatite distribution in nanoparticles nodules in the cells.
  • Resumo IPEN-doc 29320
    Micro-Raman spectroscopy for identification of microplastics in the São Vicente estuarine
    2022 - BERECZKI, ALLAN; PASCOAL, DIEGO R.C.; DIPOLD, JESSICA; GIMILIANI, GIOVANA T.; PARRA, DUCLERC F.; FREITAS, ANDERSON Z.; WETTER, NIKLAUS
    Microplastics (MPs) are a concern regarding our environment due to the risks posed by the interactions of the large amounts of anthropogenic MPs dumped in the environment with biological systems. MPs have been vastly found in the environment and are transferred to the food chain with MPs being detected in foods, beverages and even in human blood and breastmilk. Understanding the behavior and characteristics of MPs is critical to assessing potential health risks (human and environmental) related to MPs and taking steps to prevent them from entering the ecosystem. Micro Raman spectroscopy is a powerful tool for measuring and characterizing MPs particles, being considered the gold standard because it allows identification of both the polymer matrix and possible pigments and contaminants. Furthermore it offers the possibility of characterizing both the chemical structure as well as the morphological features of the MPs. We utilized a Raman system to characterize MPs from the environment. Results from a standard MP sample were successfully measured and identified to reference spectra and even small portions of the sample as small as a few μm are suitable for obtaining a high quality spectrum for identification of the material (Fig1). Samples collected from at the São Vicente estuarine are being studied and by means of comparison with the Willey database it was possible to identify MP, additives and contaminants, thus demonstrating the power of the technique.
  • Resumo IPEN-doc 29319
    From micro to nano Raman
    2022 - WETTER, NIKLAUS; FREITAS, ANDERSON Z.; BERECZKI, ALLAN; PASCOAL, DIEGO R.C.; DIPOLD, JESSICA; PARRA, DUCLERC; ROSSI, WAGNER; CABRAL, FERNANDA V.; RIBEIRO, MARTHA S.
    The environmental accumulation of nanoplastics formed by material of anthropic origin has raised doubts about their safety, especially to the human body. While microplastics are accidentally consumed, nanoplastics (NPs) are even more concerning as they are much more likely to be absorbed by human body cells. It is known that plastics smaller than 200 nm can penetrate cell membranes and cross the blood-brain barrier. Studies have shown that polystyrene (PS) NPs from the environment carry a high load of toxins capable of compromising human brain cells. Very little is still known about what effects, cytotoxic or not, these plastics have on different organs. Understanding the property-function relationship of nanoparticles in various fields of application involves determining their physicochemical properties, which is still a formidable challenge to date. Our project focuses on the development of a methodology for the detection of micro- and NPs using micro-Raman, TERS (Tip Enhanced Raman Spectroscopy), collinear Raman and AFM, nuclear techniques, as well as a methodology for in vitro evaluation of the toxic effects of these materials through biochemical assays of cytotoxicity and genotoxicity. The project contemplates the determination of the adsorption capacity of metallic ions by NPs and the absorption of micro- and nanoplastics in cell cultures with radioactive tracers, the determination of microplastics in tissues from necropsies of marine animals and gamma spectroscopy of the cellular incorporation of NPs labeled with radioactive isotopes. In figure 1 we show examples of (a) the detection of microplastics from the Santos basin and comparison to Raman reference database (KnowItAll®), (b) detection of NPs in mouse fibroblast cells and (c) detection of very small particles (50 nm) which can be achieved by co-localized techniques of AFM + Raman using special, narrow (50 m), femtosecond laser written gratings on quartz.
  • Resumo IPEN-doc 29318
    Micro-Raman spectroscopy characterization of dental pulp stem cells differentiation induced by calcium phosphate nanoparticles
    2022 - SILVA, FLAVIA R.O.; PASCOAL, DIEGO R.C.; BERECZKI, ALLAN; SIPERT, CARLA R.; BRAGA, ROBERTO R.; BELLINI, MARIA H.; SILVA, LUIS F.T. da; FREITAS, ANDERSON Z.; WETTER, NIKLAUS U.
    Calcium phosphates are chemical compounds used in medicine for tissue engineering. This work analyzes the process of cell differentiation by nanoparticles in dental pulp stem cells for tissues regeneration and the development of new therapeutic methods. The most widely used synthetic calcium phosphate based bioceramic is hydroxyapatite [HA, Ca10(PO4)6(OH)2]. Micro-Raman spectroscopy assays are a powerful tool for measuring and characterizing calcium phosphates nanoparticles internalized by cells because of its capability to detect the chemical bonds of nanoparticles and collagen simultaneously and evidencing their interaction within the cell-nanoparticle system. Microscope images (Fig.1a) and Raman spectra (Fig.1b) were obtained for HA-incorporated stem cells where it was possible to observe the formed nodules of calcium phosphate and the matrix in the incorporated samples. HA and collagen peaks were detected in the samples, showing that the nanoparticles induced osteogenic differentiation of the stem cells. The spectra of the nodules showed HA characteristic peaks, while matrix spectra displayed characteristic collagen peaks. Studies have been carried out for the development of new and modified calcium phosphate nanoparticles that should further improve biostimulation.