GAIANE SABUNDJIAN

Resumo

Possui graduação em Bacharel e Licenciatura Em Física pela Pontifícia Universidade Católica de São Paulo(1978), mestrado em Tecnologia Nuclear / Reatores de Potência pelo Instituto de Pesquisas Energéticas e Nucleares(1981) e doutorado em Engenharia Mecânica pela Escola Politêcnica de São Paulo(1999). Atualmente é TECNOLOGISTA SENIOR do Comissão Nacional de Energia Nuclear. Tem experiência na área de Engenharia Nuclear, com ênfase em Tecnologia dos Reatores. Atuando principalmente nos seguintes temas:Elementos Finitos, Formulação Petrov-Galerkin, Equações de Navier-Stokes, Fluidos Incompressíveis, Funções de Expansão Hierárquicas. (Texto extraído do Currículo Lattes em 13 out. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 36
  • Artigo IPEN-doc 27183
    Total and partial loss of coolant experiments in an instrumented fuel assembly of IEA-R1 research reactor
    2020 - MAPRELIAN, EDUARDO; TORRES, WALMIR M.; BELCHIOR JUNIOR, ANTONIO; UMBEHAUN, PEDRO E.; BERRETTA, JOSE R.; SABUNDJIAN, GAIANE
    The safety of nuclear facilities has been a growing global concern, mainly after the Fukushima nuclear accident. Studies on nuclear research reactor accidents such as the Loss of Coolant Accident (LOCA), many times considered a design basis accident, are important for ensure the integrity of the plant. A LOCA may lead to the partial or complete uncovering of the fuel assemblies and it is necessary to assure the decay heat removal as a safety condition. This work aimed to perform, in a safe way, partial and complete uncovering experiments for an Instrumented Fuel Assembly (IFA), in order to measure and compare the actual fuel temperatures behavior for LOCA in similar conditions to research reactors. A test section for experimental simulation of Loss of Coolant Accident named STAR was designed and built. The IFA was irradiated in the IEA-R1 core and positioned in the STAR, which was totally immersed in the reactor pool. Thermocouples were installed in the IFA to measure the clad and fluid temperatures in several axial and radial positions. Experiments were carried out for five levels of uncovering of IFA, being one complete uncovering and four partial uncovering, in two different conditions of decay heat. It was observed that the cases of complete uncovering of the IFA were the most critical ones, that is, those cases presented higher clad temperatures when compared with partial uncovering cases, for the specific conditions of heat decay intensity and dissipation analyzed. The maximum temperatures reached in all experiments were quite below the fuel blister temperature, which is around 500 °C. The STAR has proven to be a safe and reliable experimental apparatus for conducting loss of coolant experiments.
  • Artigo IPEN-doc 24758
    Classification of natural circulation two-phase flow image patterns based on self-organizing maps of full frame DCT coefficients
    2018 - MESQUITA, ROBERTO N. de; CASTRO, LEONARDO F.; TORRES, WALMIR M.; ROCHA, MARCELO da S.; UMBEHAUN, PEDRO E.; ANDRADE, DELVONEI A.; SABUNDJIAN, GAIANE; MASOTTI, PAULO H.F.
    Many of the recent nuclear power plant projects use natural circulation as heat removal mechanism. The accuracy of heat transfer parameters estimation has been improved through models that require precise prediction of two-phase flow pattern transitions. Image patterns of natural circulation instabilities were used to construct an automated classification system based on Self-Organizing Maps (SOMs). The system is used to investigate the more appropriate image features to obtain classification success. An efficient automated classification system based on image features can enable better and faster experimental procedures on two-phase flow phenomena studies. A comparison with a previous fuzzy inference study was foreseen to obtain classification power improvements. In the present work, frequency domain image features were used to characterize three different natural circulation two-phase flow instability stages to serve as input to a SOM clustering algorithm. Full-Frame Discrete Cosine Transform (FFDCT) coefficients were obtained for 32 image samples for each instability stage and were organized as input database for SOM training. A systematic training/test methodology was used to verify the classification method. Image database was obtained from two-phase flow experiments performed on the Natural Circulation Facility (NCF) at Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN), Brazil. A mean right classification rate of 88.75% was obtained for SOMs trained with 50% of database. A mean right classificationrate of 93.98% was obtained for SOMs trained with 75% of data. These mean rates were obtained through 1000 different randomly sampled training data. FFDCT proved to be a very efficient and compact image feature to improve image-based classification systems. Fuzzy inference showed to be more flexible and able to adapt to simpler statistical features from only one image profile. FFDCT features resulted in more precise results when applied to a SOM neural network, though had to be applied to the full original grayscale matrix for all flow images to be classified.
  • Resumo IPEN-doc 24614
    A CFD numerical model for the flow distribution in a MTR fuel element
    2017 - ANDRADE, D.A.; ANGELOA, G.; ANGELO, E.; SANTOS, P.H.G.; OLIVEIRA, F.B.V.; TORRES, W.M.; UMBEHAUN, P.E.; SOUZA, J.A.B.; BELCHIOR JUNIOR, A.; SABUNDJIAN, G.; PRADO, A.C.
    Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool.
  • Resumo IPEN-doc 24578
    Experiments of loss of coolant in the IEA-R1 reactor
    2017 - MAPRELIAN, E.; TORRES, W.M.; BELCHIOR JUNIOR, A.; UMBEHAUN, P.E.; SANTOS, S.C.; FRANÇA, R.L.; PRADO, A.C.; MACEDO, L.A.; SILVA, A.T. E; BERRETTA, J.R.; SABUNDJIAN, G.
    The Loss of Coolant Accident (LOCA) has been considered Design Basis Accident (DBA) for several kind of reactors. The test section for experimental (STAR) for simulation of LOCA, using the Instrumented Fuel Assembly (IFA) EC-208 was designed, assembled, commissioned, and used for the experiments at the IEA-R1 Reactor. The experiments were performed for five different levels of fuel uncovering and two heat decay conditions. The five levels consisted of one total and four partial uncovering of the IFA. The results obtained for each experiment were the section level and 13 IFA temperatures. A data acquisition system was used to record the process parameters. The STAR section has proved to be a very safe and efficient tool for fuel uncovering experiments to obtain thermal-hydraulic data for research and development, and for the data to be compared with safety analysis code calculations.
  • Resumo IPEN-doc 23885
    Heat transfer mode in the core of the Angra 2 nuclear power plant during small break loca obtained with RELAP5 code
    2013 - SABUNDJIAN, GAIANE; BELCHIOR JUNIOR, ANTONIO; CONTI, THADEU das N.; ROCHA, MARCELO da S.; ANDRADE, DELVONEI A. de; TORRES, WALMIR M.; MACEDO, LUIZ A.; UMBEHAUN, PEDRO E.; MESQUITA, ROBERTO N. de; LIMA, ANA C. de S.
    This work aims to identify the heat transfer mode with RELAP5/MOD3.2.gama code in the core of Angra 2 facility. The postulate accident is the Loss of Coolant Accident (LOCA) in the primary circuit for Small Break (SB), which is described in Chapter 15 of the Final Safety Analysis Report of Angra 2 (FSAR). The accident consists basically of the total break of the cold leg of Angra 2 facility. The rupture area considered was 380 cm2, which represents 100% of the primary circuit pipe °ow area. The Emergency Core Cooling System (ECCS) e±ciency is also tested in this accident. In this simulation, failure and repair criteria are adopted for the ECCS components in order to verify the system operation e±ciency - preserving the integrity of the reactor core and guaranteeing its cooling - as expected by the project design. SBLOCA accidents are characterized by a fast blowdown in the primary circuit to values that activate the low pressure injection system followed by the water injection from the accumulators. The thermal-hydraulic processes inherent to the accident phenomenon, such as hot leg vaporization and consequently core vaporization cause inappropriate °ow distribution in the reactor core that can lead to reduction in the core liquid level, up to the point that the ECCS is able to re°ood it. This work shows the mode numbers and the wall convection heat transfer used in the RELAP5 code that were accessed during the execution of the program. The results showed that the numerical simulations with RELAP5 were satisfactory and that the ECCS worked e±ciently, guaranteeing the integrity of the reactor core.
  • Artigo IPEN-doc 21115
    Commissioning of the star test section for experimental simulation of loss coolant accident using the EC-208 instrumented fuel assembly of the IEA-R1 reactor
    2015 - MAPRELIAN, EDUARDO; TORRES, WALMIR M.; PRADO, ADELK C.; UMBEHAUN, PEDRO E.; FRANÇA, RENATO L.; SANTOS, SAMUEL C.; MACEDO, LUIZ A.; SABUNDJIAN, GAIANE
  • Artigo IPEN-doc 21073
    Self-organizing maps applied to two-phase flow on natural circulation loop studies
    2015 - CASTRO, LEONARDO F.; CUNHA, KELLY de P.; ANDRADE, DELVONEI A. de; SABUNDJIAN, GAIANE; TORRES, WALMIR M.; MACEDO, LUIZ A.; ROCHA, MARCELO da S.; MASOTTI, PAULO H.F.; MESQUITA, ROBERTO N. de
  • Artigo IPEN-doc 20980
    A CFD numerical model for the flow distribution in a MTR fuel element
    2015 - ANDRADE, DELVONEI A. de; ANGELO, GABRIEL; ANGELO, EDVALDO; SANTOS, PEDRO H. di G.; OLIVEIRA, FABIO B.V. de; TORRES, WALMIR M.; EMBEHAUN, PEDRO E.; SOUZA, JOSE A.B. de; BELCHIOR JUNIOR, ANTONIO; SABUNDJIAN, GAIANE; PRADO, ADELK de C.
  • Artigo IPEN-doc 16135
    Study of the natural circulation phenomenon for nuclear reactors
    2010 - CONTI, THADEU das N.; SABUNDJIAN, GAIANE; TORRES, WALMIR M.; MACEDO, LUIZ A.; ANDRADE, DELVONEI A.; UMBEHAUN, PEDRO E.; MESQUITA, ROBERTO N.
  • Artigo IPEN-doc 16126
    Análise teórico/experimental do fenômeno de circulação natural
    2010 - SABUNDJIAN, GAIANE; CONTI, THADEU N.; TORRES, WALMIR M.; MACEDO, LUIZ A.; ANDRADE, DELVONEI A.; UMBEHAUN, PEDRO E.; MESQUITA, ROBERTO N.; SILVA FILHO, MAURO F.; BRAZ FILHO, FRANCISCO A.; BORGES, EDUARDO M.
    O objetivo deste trabalho é o estudo do fenômeno de circulação natural em circuitos experimentais para aplicação em instalações nucleares. Dada a nova geração de reatores nucleares compactos, que utiliza a circulação natural do fluido refrigerante como sistema de refrigeração e de remoção de calor residual em caso de acidente ou desligamento da planta, há um crescente interesse na comunidade cientifica pelo estudo desse fenômeno. O circuito experimental utilizado neste estudo encontra-se montado no Centro de Engenharia Nuclear (CEN) do Instituto de Pesquisas Energéticas e Nucleares de São Paulo (IPEN-SP). Para a realização deste trabalho foram simulados alguns experimentos com diferentes níveis de potência no aquecedor, que originou um banco de dados experimentais que é utilizado para validar alguns programas computacionais de termo-hidráulica. Particularmente, neste estudo os resultados experimentais obtidos são comparados com a modelagem teórica feita com o código RELAP5 [1]. Os resultados obtidos com o programa mostraram-se satisfatórios quando comparados com os experimentais.