GROSSO, ROBSON L.MUCHE, DERECK N.F.YONAMINE, TAEKOMUCCILLO, ELIANA N.S.DILLON, SHEN J.CASTRO, RICARDO H.R.2019-10-022019-10-022019GROSSO, ROBSON L.; MUCHE, DERECK N.F.; YONAMINE, TAEKO; MUCCILLO, ELIANA N.S.; DILLON, SHEN J.; CASTRO, RICARDO H.R. Sintering of translucent and single-phase nanostructured scandia-stabilized zirconia. <b>Materials Letters</b>, v. 253, p. 246-249, 2019. DOI: <a href="https://dx.doi.org/10.1016/j.matlet.2019.06.076">10.1016/j.matlet.2019.06.076</a>. Disponível em: http://repositorio.ipen.br/handle/123456789/30158.0167-577Xhttp://repositorio.ipen.br/handle/123456789/30158Fully-dense and single-phase nanostructured scandia-stabilized zirconia specimens were produced by high-pressure spark plasma sintering technique. Nanocrystalline powders were prepared by the coprecipitation method. Green pellets were sintered at temperatures varying from 700 to 900 C and pressures from 1.4 to 2 GPa, resulting in dense microstructures with single-phase fluorite-type cubic structure within a wide range of Sc2O3 content (6–15 mol%). The average grain size of sintered specimens ranged from 8 to 20 nm. Transmittance spectra confirm translucence in sintered specimens, which is consistent with full density. The results reported here reveal that the polymorphism challenge in the zirconiascandia system can be successfully suppressed by this consolidation technique, which allows for controlling the grain size of bulk specimens.246-249openAccesszirconium oxidessinteringnanostructuresmicrostructureceramicsgrain sizescandiumstabilizationSintering of translucent and single-phase nanostructured scandia-stabilized zirconiaArtigo de periódico25310.1016/j.matlet.2019.06.0760000-0001-9219-388Xhttps://orcid.org/0000-0001-9219-388X66.53683.00