GROSSO, ROBSON L.VIKRANT, K.S.N.FENG, LINMUCCILLO, ELIANA N.S.MUCHE, DERECK N.F.JAWAHARRAM, GOWTHAM S.BARR, CHRISTOPHER M.MONTERROSA, ANTHONY M.CASTRO, RICARDO H.R.EDWIN GARCIA, R.HATTAR, KHALIDDILLON, SHEN J.2020-12-032020-12-032020GROSSO, ROBSON L.; VIKRANT, K.S.N.; FENG, LIN; MUCCILLO, ELIANA N.S.; MUCHE, DERECK N.F.; JAWAHARRAM, GOWTHAM S.; BARR, CHRISTOPHER M.; MONTERROSA, ANTHONY M.; CASTRO, RICARDO H.R.; EDWIN GARCIA, R.; HATTAR, KHALID; DILLON, SHEN J. Ultrahigh temperature in situ transmission electron microscopy based bicrystal coble creep in Zirconia II: interfacial thermodynamics and transport mechanisms. <b>Acta Materialia</b>, v. 200, p. 1008-1021, 2020. DOI: <a href="https://dx.doi.org/10.1016/j.actamat.2020.08.070">10.1016/j.actamat.2020.08.070</a>. Disponível em: http://200.136.52.105/handle/123456789/31586.1359-6454http://200.136.52.105/handle/123456789/31586This work uses a combination of stress dependent single grain boundary Coble creep and zero-creep ex- periments to measure interfacial energies, along with grain boundary point defect formation and migra- tion volumes in cubic ZrO 2 . These data, along with interfacial diffusivities measured in a companion paper are then applied to analyzing two-particle sintering. The analysis presented indicates that the large acti- vation volume, v ∗= v f + v m primarily derives from a large migration volume and suggests that the grain boundary rate limiting defects are delocalized, possibly due to electrostatic interactions between charge compensating defects. The discrete nature of the sintering and creep process observed in the small-scale experiments supports the hypothesis that grain boundary dislocations serve as sources and sinks for grain boundary point defects and facilitate strain during sintering and Coble creep. Model two-particle sintering experiments demonstrate that initial-stage densification follows interface reaction rate-limited kinetics.1008-1021openAccessgrain boundariescreeptransmission electron microscopytemperature range 0400-1000 kzirconium oxidessinteringbicrystalsthermodynamicsUltrahigh temperature in situ transmission electron microscopy based bicrystal coble creep in Zirconia IIArtigo de periódico20010.1016/j.actamat.2020.08.0700000-0001-9219-388Xhttps://orcid.org/0000-0001-9219-388X91.1896.75