BRUNO SANTOS CORREA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • Artigo IPEN-doc 30205
    Cobalt doping effects in zinc oxide
    2024 - PEREIRA, LUCIANO F.D.; FERREIRA, WANDERSON L.; CORREA, BRUNO S.; COSTA, MESSIAS S.; COSTA, CLEIDILANE S.; FILHO, ARNALDO A.M.; SALES, TATIANE S.N.; BOSCH-SANTOS, BRIANNA; SCHELL, JULIANA; BURIMOVA, ANASTASIA; SAXENA, RAJENDRA N.; CABRERA-PASCA, GABRIEL A.; CARBONARI, ARTUR W.
    In this paper, we investigate the solubility effects of Co in ZnO (Zn1−xCoxO, where x = 0, 0.03, 0.05, 0.1, 0.2, 0.25, 0.4, 0.8, and 1) by combining the results of perturbed angular correlation (PAC) spectroscopy using highly diluted 111Cd as probe nuclei and ab initio calculations based on spin-density functional theory (SDFT). This combined approach enables us to characterize the local structure around Cd ions, where, through PAC technique, it was possible to measure the EFG as a function of temperature and Co concentration and thereby monitor the changes in the structure and the Co solubility threshold in ZnO and the ZnO/CoO/Co3O4 mixed phase. The full-potential linear augmented plane wave plus local orbital (APW+lo) formalism were used here to describe the electronic structure of the supercells, including the atomic relaxations. These Ab initio calculations show an interesting behavior of the Cd and Co impurity levels in the band structure of ZnO, which explains the experimental results in terms of the origin of EFG and the evidence of ferromagnetic response.
  • Artigo IPEN-doc 29041
    Local crystalline structure of doped semiconductor oxides characterized by perturbed angular correlations
    2022 - BURIMOVA, ANASTASIA; CARBONARI, ARTUR W.; LIMA, NICOLE P. de; MIRANDA FILHO, ARNALDO A.; SOUZA, ALEXANDRE P. dos S.; SALES, TATIANE da S.N.; FERREIRA, WANDERSON L.; PEREIRA, LUCIANO F.D.; CORREA, BRUNO S.; SAXENA, RAJENDRA N.
    Doping semiconductor oxides with trace amounts of non-native elements can improve their properties such as bandgap and conductivity. The lack of local techniques makes the precise characterization of these materials difficult. Among the few techniques capable of providing local characterization, those based on hyperfine interactions at probe nuclei have the advantage of being well established, probing the material homogeneously and completely, thus investigating different regions of material. Some of these techniques are also quite sensitive even at extremely low dopant concentrations. The perturbed angular correlation technique, combined with first-principles calculations, has recently been shown to be a powerful method for characterizing doped semiconductor oxides. In this paper, we present a brief review of the unique information extracted from the semiconductor investigation with such a complex approach, including semiconductor oxides doped with cadmium and other elements. A strong relationship between the local environment, including electronic structure, and the nature of the dopant and the native element of the doped oxides is also shown.
  • Resumo IPEN-doc 27090
    Hyperfine interaction study of iron oxide nanoparticles coated with Amazon ucuúba, bacaba and açaí, oils by PAC spectroscopy using 111In-111Cd nuclear probe nuclei
    2019 - CORREA, B.S.; COSTA, M.S.; SENA, C.; CABRERA-PASCA, G.A.; CARVALHO JUNIOR, R.N.; SAXENA, R.N.; CARBONARI, A.W.
    The use of nanoparticles coated with different materials have been the subject of study by many researchers to improve the quality of nanomaterials for biomedical applications such as controlled drug delivery, image contrast and treatment of cancer by magnetic hyperthermia [1]. In this work we used ucuúba (virola surinamensis), bacaba (Oenocarpus bacaba Mart.) and açaí (Euterpe oleracea Mart.) oils to coat Fe3O4 nanoparticles. The ucuúba, bacaba and açaí are native tree of the Amazon forest, whose oils are rich in fatty acids present in different proportions, such as, lauric, myristic, steatic, oleic, palmitic, and linoleic acid. These pure oils, free of solvents, were obtained by the extraction method with carbon dioxide in the supercritical state [2], and added during the synthesis process of iron oxide nanoparticles by thermal decomposition method [3]. The samples were characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Perturbed Angular Correlation (PAC) spectroscopy. The XRD results confirmed the formation of Fe3O4 phase. The TEM results determined the average size to be (> 5 nm) and possible spherical morphology of the magnetite nanoparticles. In order to perform the PAC measurements, 111In-111Cd probe nuclei were diffused in the powder samples at 973 K for 2.5 h. PAC measurements permitted the determination of electric quadrupole and magnetic dipole -hyperfine parameters as a function of temperature. The Curie temperature in each case was determined to be ~ 855 K.
  • Resumo IPEN-doc 27089
    Effects of surfactant on the morphology of α-Bi2O3 synthesized by the Sol-gel method
    2019 - PAES, S.C.; CORREA, B.S.; COSTA, M.S.; SENA, C.; CABRERA-PASCA, G.A.; SAXENA, R.N.; CARBONARI, A.W.
    Nano and micromaterial research, with a well-defined size and shape, has attracted attention from researchers in the areas of chemistry, physics, engineering and biomedicine, due to the wide range of possible applications such as: health, environment, catalysis and miniaturization of electronic devices. In this sense, the chemical routes of synthesis, such as Sol-Gel, are more prominent because it allows the production of particulate materials and thin films, with controllable size and morphology. In this work, bismuth oxide microparticles were synthesized by the Sol-Gel method using metallic bismuth (99.999% purity) in acid solution. Initially, bismuth was diluted with nitric acid solution and distilled water. After dilution, citric acid (600 mg) and ethylene glycol were added. The volume of ethylene glycol was varied from 1 to 3.75 mL, in order to study the morphological effects of its concentration. The samples were then subjected to the calcination process at 673 K for 12 hours. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and Raman spectroscopy. The XRD diffractograms and the Raman spectrum vibration bands showed that the synthesized samples correspond to the bismuth oxide in the alpha phase (α-Bi2O3) [1-3]. The EDS results show typical elements of bismuth oxide, without contaminants. The SEM images revealed different morphologies, ranging from the formation of flakes to microspherical particles with good size distribution (diameter 0.7 and 2.0 μm). All samples have a crystalline structure and vibration modes corresponding to the α-Bi2O3 phase, but these have totally different morphologies, which proves the dependence of the morphology with the concentration of ethylene glycol. In order to perform the PAC measurements, 111In-111Cd probe nuclei were diffused in the samples during synthesis. PAC measurements permitted the determination of electric quadrupole - hyperfine parameters as a function of temperature, from 50 to 673 K.
  • Resumo IPEN-doc 27088
    Study by perturbed angular correlation spectroscopy with 111In-111Cd of iron oxide nanoparticles synthesized using Amazon ucuúba, bacaba and açaí, oils
    2019 - CORREA, B.S.; COSTA, M.S.; SENA, C.; CABRERA-PASCA, G.A.; CARVALHO JUNIOR, R.N.; SAXENA, R.N.; CARBONARI, A.W.
    The use of nanoparticles coated with different materials are also a subject of study by many scientists to improve the quality of nanomaterials for biomedical applications such as controlled drug delivery, image contrast and treatment of cancer by magnetic hyperthermia [1]. In this work was used ucuúba (virola surinamensis), bacaba (Oenocarpus bacaba Mart.) and açaí (Euterpe oleracea Mart.) oils to coat Fe3O4 nanoparticles. The ucuúba, bacaba and açaí are native tree of the Amazon forest, whose oils is rich in fatty acids present in different proportions, such as, lauric, myristic, steatic, oleic, palmitic, and linoleic acid. These pure oils, free of solvents, was obtained by the extraction method with carbon dioxide in the supercritical state [2], and added to the synthesis process of iron oxide nanoparticles by thermal decomposition method [3]. The samples were characterized by X-ray diffraction (XRD), it was possible to verify the formation of Fe3O4 nanoparticles by the position and width of the intensity peaks. Transmission electron microscopy (TEM) were used to observe the average size (> 5 nm) and possible spherical morphology of the magnetite nanoparticles. In order to perform perturbed angular correlation spectroscopy (PAC) the powder samples were heated at 973 K for 2,5 h to diffuse the 111In-111Cd probe nuclei. Using this technique, it is possible determine the electric quadrupole and magnetic dipole hyperfine parameters of the samples as a function of temperature, and it was determined the Curie temperature of ~ 855 K for both samples. The results showed that it is possible synthesized Fe3O4 nanoparticles using ucuúba, bacaba and açaí oils.