BRUNO SANTOS CORREA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • Resumo IPEN-doc 29751
    Magnetic properties of Er-doped Fe3O4 nanoparticles studied by perturbed angular spectroscopy
    2019 - CORREA, E.L.; BOSCH-SANTOS, B.; SALES, T.S.N.; CABRERA-PASCA, G.A.; CORREA, B.S.; CARBONARI, A.W.; OLESHKO, V.P.; DENNIS, C.L.
  • Artigo IPEN-doc 28524
    Magnetic and structural properties of the intermetallic Ce(1−x)LaxCrGe3 series of compounds
    2021 - BOSCH-SANTOS, B.; CABRERA-PASCA, G.A.; CORREA, E.L.; CORREA, B.S.; SALES, T.N.S.; MOON, K-W.; DENNIS, C.L.; HUANG, Q.; LEAO, J.B.; LYNN, J.W.; CARBONARI, A.W.
    The Ce(1−x)LaxCrGe3 (x = 0, 0.19, 0.43, 0.58, and 1) intermetallic compound system has been investigated by magnetization measurements and neutron scattering techniques to determine the effect of La doping on the magnetic ordering and exchange interaction between Cr ions. The structural and magnetic characterization in this series was first verified by x-ray diffraction and bulk magnetization measurements. The samples exhibit the known hexagonal perovskite structure (P63/mmc space group) and have a single magnetic phase according to magnetizationmeasurements. In this paper, the ferromagnetic ordering temperature for Cr evolves smoothly from a range of 68 K to 77 K for CeCrGe3 to a range of 91 K to 96 K for LaCrGe3 as La replaces Ce. Magnetization results indicate the formation of domain walls below the transition temperature for all Ce(1−x)LaxCrGe3 systems investigated. Neutron results indicate ordered magnetic Cr moments aligned along the c axis for the x = 1 LaCrGe3 system, as well as for x = 0.19, 0.43, and 0.58, which contrasts with the x = 0 CeCrGe3 where the moments order in the ab plane.
  • Resumo IPEN-doc 27308
    RE-doped Fe3O4 (RE = Eu, Gd, Er) nanoparticles for nanothermometry
    2019 - CORREA, E.; BOSCH-SANTOS, B.; SALES, T.; CABRERA-PASCA, G.; CORREA, B.S.; NETO, O.F.; CARBONARI, A.W.; OLESHKO, V.; DENNIS, C.
    Temperature affects every physical system, chemical reaction, and biological process. A new method, magnetic nanothermometry, is being explored to measure temperature throughout a volume. This method uses large changes in magnetization as function of temperature, which cannot be obtained with current magnetic nano-objects (MNO). To get a large magnetization change we have examined the magnetic properties of RE-doped Fe3O4 (RE = Eu, Gd, Er) MNO. Samples were synthesized by co-precipitation. For the doped material, RE+3 were chosen in order to replace the Fe+3 in the (Fe+2)(Fe+3)2O4 structure. Structural characterization was performed by X-ray diffraction and transmission electron microscopy. Hyperfine interaction parameters as a function of temperature (300 K to 873 K) were obtained by perturbed angular g-g correlation (PAC) spectroscopy using 111In(111Cd) as probe nuclei. To fit the PAC spectra, the 111Cd probes were considered to occupy three sites: tetrahedral, octahedral, and a third site where the probes are located at the nanoparticle surface [1]. The hyperfine magnetic field Bhf was calculated using the Larmor equation, and its behavior as a function of temperature follows a Brillouin-type transition. For example, the Curie temperature (TC) obtained for 5% Er-doped was approx. 846 K (FIG. 1), which is higher than the expected TC for pure Fe3O4 (approx. 722 K) [2]. Magnetization as a function of temperature shows a 70 % change in magnetization around 100 K for Er-doped Fe3O4 (FIG.2), which is an improvement in temperature on pure Fe3O4 (below 50 K) [3]. Current work is focused on correlating the temperature range in which the magnetization change occurs and determining if it depends on the dopant element.
  • Resumo IPEN-doc 26822
    Can natural oils improve the properties of magnetic nanoparticles?
    2019 - CORREA, B.S.; COSTA, M.S.; CABRERA-PASCA, G.; SENA, C.; PINTO, R.H.; CARVALHO JUNIOR, R.N.; FREITAS, R.S.; SAIKI, M.; CORREA, E.; CARBONARI, A.W.
    The use of nanoparticles coated with different materials have been studied by many researchers to improve the quality of nanomaterials for biomedical applications such as controlled drug delivery, image contrast and treatment of cancer by magnetic hyperthermia [1]. In this work, we used oils extracted from ucuúba (Virola surinamensis), bacaba (Oenocarpus bacaba Mart.) and açaí (Euterpe oleracea Mart.) to coat Fe3O4 nanoparticles. The ucuúba, bacaba and açaí are native trees of the Amazon forest, whose oils are rich in fatty acids, such as lauric, myristic, steatic, oleic, palmitic, and linoleic acid, with different proportions. These pure oils, free of solvents, were obtained by the extraction method with carbon dioxide in the supercritical state [2], and then added during the synthesis process of iron oxide nanoparticles by thermal decomposition method [3]. The results of X-ray diffraction confirmed the formation of Fe3O4 single phase. The average size around 3 nm and spherical morphology of the magnetite nanoparticles was determined by transmission electron microscopy. The study of magnetic properties revealed a saturation magnetization (Ms) enhancement and high values of the anisotropy constant for Fe3O4 samples when coated with açaí (91.4 emu.g-1; 4.6 105 J.m-3) and ucuúba (80.6 emu.g-1; 9.3 105 J.m-3) oils, which present a large percentage of saturated total fatty acid. The results indicate that nanoparticles with sizes smaller than around 5 nm present Ms values as high as those found in bulk Fe3O4 and higher than those usually obtained for nanoparticles coated with oleic acid [4]. The neutron activation analysis (NAA) nuclear technique was used to determine with high accuracy the mass of Fe in the Fe3O4 core of nanoparticles in order to normalize the magnetization values [5]. These results show that natural oils have a great potential to produce stable and quality nanoparticles as compared with conventional coated.