ARIAN PEREZ NARIO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 28825
    Synthesis of a 2‑nitroimidazole derivative N‑(4‑[18F]fluorobenzyl)‑2‑(2‑nitro‑1H‑imidazol‑1‑yl)‑acetamide ([18F]FBNA) as PET radiotracer for imaging tumor hypoxia
    2022 - NARIO, ARIAN P.; WOODFIELD, JENILEE; SANTOS, SOFIA N. dos; BERGMAN, CODY; WUEST, MELINDA; ARAUJO, YASNIEL B.; LAPOLLI, ANDRE L.; WEST, FREDERICK G.; WUEST, FRANK; BERNARDES, EMERSON S.
    Background: Tissue hypoxia is a pathological condition characterized by reducing oxygen supply. Hypoxia is a hallmark of tumor environment and is commonly observed in many solid tumors. Non-invasive imaging techniques like positron emission tomography (PET) are at the forefront of detecting and monitoring tissue hypoxia changes in vivo. Results: We have developed a novel 18F-labeled radiotracer for hypoxia PET imaging based on cytotoxic agent benznidazole. Radiotracer N-(4-[18F]fluorobenzyl)-2-(2-nitro-1H-imidazol-1-yl)acetamide ([18F]FBNA) was synthesized through acylation chemistry with readily available 4-[18F]fluorobenzyl amine. Radiotracer [18F]FBNA was obtained in good radiochemical yields (47.4 ± 5.3%) and high radiochemical purity (> 95%). The total synthesis time was 100 min, including HPLC purification and the molar activity was greater than 40 GBq/µmol. Radiotracer [18F]FBNA was stable in saline and mouse serum for 6 h. [18F]FBNA partition coefficient (logP = 1.05) was found to be more lipophilic than [18F]EF-5 (logP = 0.75), [18F]FMISO (logP = 0.4) and [18F]FAZA (logP =  − 0.4). In vitro studies showed that [18F]FBNA accumulates in gastric cancer cell lines AGS and MKN45 under hypoxic conditions. Conclusions: Hence, [18F]FBNA represents a novel and easy-to-prepare PET radioligand for imaging hypoxia.
  • Artigo IPEN-doc 27181
    Synthesis and evaluation of [18F]FEtLos and [18F]AMBF3Los as novel 18F-labelled losartan derivatives for molecular imaging of angiotensin II type 1 receptors
    2020 - PIJEIRA, MARTHA S.O.; NUNES, PAULO S.G.; SANTOS, SOFIA N. dos; ZHANG, ZHENGXING; NARIO, ARIAN P.; PERINI, EFRAIN A.; TURATO, WALTER M.; RIERA, ZALUA R.; CHAMMAS, ROGER; ELSINGA, PHILIP H.; LIN, KUO-SHYAN; CARVALHO, IVONE; BERNARDES, EMERSON S.
    Losartan is widely used in clinics to treat cardiovascular related diseases by selectively blocking the angiotensin II type 1 receptors (AT1Rs), which regulate the renin-angiotensin system (RAS). Therefore, monitoring the physiological and pathological biodistribution of AT1R using positron emission tomography (PET) might be a valuable tool to assess the functionality of RAS. Herein, we describe the synthesis and characterization of two novel losartan derivatives PET tracers, [18F]fluoroethyl-losartan ([18F]FEtLos) and [18F]ammoniomethyltrifluoroborate-losartan ([18F]AMBF3Los). [18F]FEtLos was radiolabeled by 18F-fluoroalkylation of losartan potassium using the prosthetic group 2-[18F]fluoroethyl tosylate; whereas [18F]AMBF3Los was prepared following an one-step 18F-19F isotopic exchange reaction, in an overall yield of 2.7 ± 0.9% and 11 ± 4%, respectively, with high radiochemical purity (>95%). Binding competition assays in AT1R-expressing membranes showed that AMBF3Los presented an almost equivalent binding affinity (Ki 7.9 nM) as the cold reference Losartan (Ki 1.5 nM), unlike FEtLos (Ki 2000 nM). In vitro and in vivo assays showed that [18F]AMBF3Los displayed a good binding affinity for AT1R-overexpressing CHO cells and was able to specifically bind to renal AT1R. Hence, our data demonstrate [18F]AMBF3Los as a new tool for PET imaging of AT1R with possible applications for the diagnosis of cardiovascular, inflammatory and cancer diseases.