MARIANA XAVIER MILAGRE

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • Artigo IPEN-doc 27812
    How microstructure affects localized corrosion resistance of stir zone of the AA2198-T8 alloy after friction stir welding
    2021 - MACHADO, CARULINE de S.C.; DONATUS, UYIME; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; VIVEIROS, BARBARA V.G. de; KLUMPP, RAFAEL E.; PEREIRA, VICTOR F.; COSTA, ISOLDA
    In this study, the microstructure and corrosion resistance of the stir zone (SZ) of the AA2198-T8 Al-Cu-Li alloy welded by friction stir welding (FSW) were investigated by microscopy, immersion tests and electrochemical techniques such as measurements of open circuit potential variation with time, and scanning vibrating electrode technique (SVET) measurements. A low chloride-containing solution (0.005 mol L−1 NaCl) was employed in the corrosion studies and severe localized corrosion (SLC) was observed in the SZ related to intergranular attack. The results were compared to those of the non-affected areas by FSW, also known as base metal (BM). In the BM, SLC was found and the type of attack related to it was intragranular. In both zones, BM and SZ, SLC was due to precipitates of high electrochemical activity, specifically T1 (Al2CuLi) phase in the BM, whereas TB (Al7Cu4Li) / T2 (Al6CuLi3) in the SZ. Scanning vibrating electrode technique (SVET) analysis was very useful in the study of SLC in the AA2198-T8 alloy showing the development of high anodic current densities at the mouth of the SLC sites.
  • Artigo IPEN-doc 27178
    Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding
    2020 - MILAGRE, MARIANA X.; DONATUS, UYIME; MOGILI, NAGA V.; SILVA, REJANE M.P.; VIVEIROS, BARBARA V.G. de; PEREIRA, VICTOR F.; ANTUNES, RENATO A.; MACHADO, CARULINE S.C.; ARAUJO, JOAO V.S.; COSTA, ISOLDA
    Scanning electrochemical microscopy (SECM) and scanning vibrating electrode technique (SVET) were used to investigate the electrochemical behaviour of the top surface of the 2098-T351 alloy welded by friction stir welding (FSW). The SVET technique was efficient in identifying the cathodic and anodic weld regions. The welding joint (WJ), which comprises the thermomechanically affected zone (TMAZ) and the stir zone (SZ), was cathodic relative to the heated affected zone (HAZ) and the base metal (BM). The reactivities of the welding joint at the advancing side (AS) and the retreating side (RS) were analyzed and compared using SECM technique in the competition mode by monitoring the dissolved oxygen as a redox mediator in 0.005 mol L−1 NaCl solution. The RS was more electrochemically active than the AS, and these results were correlated with the microstructural features of the welded alloy.
  • Artigo IPEN-doc 26644
    Macro and microgalvanic interactions in friction stir weldment of AA2198-T851 alloy
    2019 - DONATUS, UYIME; SILVA, REJANE M.P. da; ARAUJO, JOAO V. de S.; MILAGRE, MARIANA X.; ABREU, CAIO P. de; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    The galvanic interactions within and between the friction stir weld zones of the AA2198-T851alloy have been investigated using electrochemical and microscopy techniques. The parentmaterial (PM) was the most anodic region and exhibited pronounced severe localized corro-sion (SLC) both when coupled and isolated. The stir zone was the most resistant to corrosionand exhibited no SLC when coupled, but exhibited SLC when isolated. Profiles associatedwith dissolved oxygen consumption and hydrogen generation currents across the weldmentwere inversely related because the anodic (PM) region produced higher hydrogen bubblesand, interestingly, consumed more dissolved oxygen compared with the other regions.
  • Artigo IPEN-doc 26643
    Exfoliation corrosion susceptibility in the zones of friction stir welded AA2098-T351
    2019 - MILAGRE, MARIANA X.; DONATUS, UYIME; MACHADO, CARULINE S.C.; ARAUJO, JOAO V.S.; FERREIRA, RAPHAEL O.; SILVA, REJANE M.P.; ANTUNES, RENATO A.; COSTA, ISOLDA
    In the present study, the exfoliation susceptibility of the weld zones in friction stir weldedAA2098-T351 was compared with that of the base metal (BM) according to ASTM G34 stan-dard practice. Friction stir welding (FSW) had a significant effect on the microstructure of theAl alloy tested and the susceptibility to exfoliation was strongly affected by the microstruc-ture. Different features of corrosion attack and exfoliation susceptibility were observed whenthe zones affected by FSW were tested isolated or coupled. Also, the near-surface deformedlayer had an important effect on the Al alloy susceptibility to exfoliation. These are themain findings of this work. The corrosion features were correlated with the microstructuralmodifications related to the welding process and with the electrochemical response. TheT1 phase morphology, distribution and size were critical for exfoliation susceptibility. Thestir zone (SZ) was the zone most resistant to exfoliation. However, resistance to exfoliationvaried with the temperatures reached in the heat affected zones (HAZs). The HAZ exposedto the lowest temperatures during welding, HAZ (LT), was the most susceptible to exfoli-ation, whereas the HAZ exposed to the highest temperatures, HAZ (HT), presented highresistance to exfoliation, similarly to the SZ. The ASTM-G34 practice was an effective anduseful method in identifying the different exfoliation resistances of the BM and the vari-ous zones affected by FSW. The results of this practice were supported by electrochemicalimpedance spectroscopy (EIS) tests.
  • Artigo IPEN-doc 24759
    On the microstructure characterization of the AA2098-T351 alloy welded by FSW
    2018 - MILAGRE, MARIANA X.; MOGILI, NAGA V.; DONATUS, UYIME; GIORJAO, RAFAEL A.R.; TERADA, MAYSA; ARAUJO, JOAO V.S.; MACHADO, CARULINE S.C.; COSTA, ISOLDA
    The complex structure of the AA2098-T351 alloy welded by friction stir welding (FSW) was investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and microhardness measurements. Thermal modelling process of the FSW process was carried out by soldering thermocouples at distances of 6, 9 and 12 mm from the weld centerline, and thermocouple measurements were used as input data into the model. Finite element software COMSOL v5.2 was used for data analysis. The prevailing phases in the base metal (BM) are T1 (Al2CuLi) theta' (Al2Cu), delta'/beta'(Al-3(Li,Zr)) and Omega (Al2Cu). In the heat affected zone (HAZ), either in the retreating or advancing sides, theta' phase was not identified. In the thermomechanical affected zone (TMAZ), T1, delta'/beta', GP zones phase were detected in the retreating side, whereas T1 and Guinier-Preston (GP) zones were not observed in the advancing side. This result supports the asymmetric behavior observed in the microhardness profile of the weld. In the stir zone (SZ), GP zones, T1, delta'/beta' (Al-3(Li,Zr)) and Omega were identified.