MARIANA XAVIER MILAGRE

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 26644
    Macro and microgalvanic interactions in friction stir weldment of AA2198-T851 alloy
    2019 - DONATUS, UYIME; SILVA, REJANE M.P. da; ARAUJO, JOAO V. de S.; MILAGRE, MARIANA X.; ABREU, CAIO P. de; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    The galvanic interactions within and between the friction stir weld zones of the AA2198-T851alloy have been investigated using electrochemical and microscopy techniques. The parentmaterial (PM) was the most anodic region and exhibited pronounced severe localized corro-sion (SLC) both when coupled and isolated. The stir zone was the most resistant to corrosionand exhibited no SLC when coupled, but exhibited SLC when isolated. Profiles associatedwith dissolved oxygen consumption and hydrogen generation currents across the weldmentwere inversely related because the anodic (PM) region produced higher hydrogen bubblesand, interestingly, consumed more dissolved oxygen compared with the other regions.
  • Artigo IPEN-doc 26643
    Exfoliation corrosion susceptibility in the zones of friction stir welded AA2098-T351
    2019 - MILAGRE, MARIANA X.; DONATUS, UYIME; MACHADO, CARULINE S.C.; ARAUJO, JOAO V.S.; FERREIRA, RAPHAEL O.; SILVA, REJANE M.P.; ANTUNES, RENATO A.; COSTA, ISOLDA
    In the present study, the exfoliation susceptibility of the weld zones in friction stir weldedAA2098-T351 was compared with that of the base metal (BM) according to ASTM G34 stan-dard practice. Friction stir welding (FSW) had a significant effect on the microstructure of theAl alloy tested and the susceptibility to exfoliation was strongly affected by the microstruc-ture. Different features of corrosion attack and exfoliation susceptibility were observed whenthe zones affected by FSW were tested isolated or coupled. Also, the near-surface deformedlayer had an important effect on the Al alloy susceptibility to exfoliation. These are themain findings of this work. The corrosion features were correlated with the microstructuralmodifications related to the welding process and with the electrochemical response. TheT1 phase morphology, distribution and size were critical for exfoliation susceptibility. Thestir zone (SZ) was the zone most resistant to exfoliation. However, resistance to exfoliationvaried with the temperatures reached in the heat affected zones (HAZs). The HAZ exposedto the lowest temperatures during welding, HAZ (LT), was the most susceptible to exfoli-ation, whereas the HAZ exposed to the highest temperatures, HAZ (HT), presented highresistance to exfoliation, similarly to the SZ. The ASTM-G34 practice was an effective anduseful method in identifying the different exfoliation resistances of the BM and the vari-ous zones affected by FSW. The results of this practice were supported by electrochemicalimpedance spectroscopy (EIS) tests.