EDUARDO DE LIMA CORREA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 6 de 6
  • Resumo IPEN-doc 29751
    Magnetic properties of Er-doped Fe3O4 nanoparticles studied by perturbed angular spectroscopy
    2019 - CORREA, E.L.; BOSCH-SANTOS, B.; SALES, T.S.N.; CABRERA-PASCA, G.A.; CORREA, B.S.; CARBONARI, A.W.; OLESHKO, V.P.; DENNIS, C.L.
  • Resumo IPEN-doc 28567
    Cd impurities in Vanadium oxides
    2021 - BURIMOVA, ANASTASIA; LEITE NETO, OSMAR F.; BOSCH-SANTOS, BRIANNA; CORREA, EDUARDO L.; PEREIRA, LUCIANO F.D.; SALES, TATIANE S.N.; RIBEIRO JUNIOR, IBERE S.; COSTA, MESSIAS S.; COSTA, CLEIDILANE; DANG, THANH T.; ZYABKIN, DMITRY; VAN STIPHOUT, KOEN K.F.; GERAMI, ADELEH M.; CORREIA, JOAO M.; SCHELL, JULIANA; CARBONARI, ARTUR W.
    The number of metastable phases, the capriciousness at changing external conditions, and lack of accurate description of local behavior already resulted in severe misinterpretation of experimental outcomes for vanadium oxides[1–3]. The scope of already implemented and potential applications of vanadium oxides is, indeed, impressive, particularly as a battery cathode for energy storage[ 4]. Doping is widely exploited as a means of application-oriented tuning of the material properties. The properties of each particular phase may be tuned by doping to satisfy specific requirements and/or improve the functional performance. In the work here reported, electric quadrupole interaction on 111mCd nuclei implanted in vanadium pentaoxide doped with different concentrations of Cd were measured with time-differential perturbed angular correlations (TDPAC). Pure V2O5 as well as doped with 1%, 5%, and 10% of Cd were measured at different temperatures. To correlate the results with the possible formation of different phases and compounds, samples of VO2, CdV2O6, and Cd2V2O7 were also measured. The intention is to provide a comprehensive description, at an atomic level, of the doping effects on the local crystal structure and the electronic structure around the impurity and the consequences on the properties of the host oxides. Preliminary results show that the probability of formation of cadmium vanadates is low but the temperature and atmosphere of measurements have an important effect on the local scale.
  • Artigo IPEN-doc 28524
    Magnetic and structural properties of the intermetallic Ce(1−x)LaxCrGe3 series of compounds
    2021 - BOSCH-SANTOS, B.; CABRERA-PASCA, G.A.; CORREA, E.L.; CORREA, B.S.; SALES, T.N.S.; MOON, K-W.; DENNIS, C.L.; HUANG, Q.; LEAO, J.B.; LYNN, J.W.; CARBONARI, A.W.
    The Ce(1−x)LaxCrGe3 (x = 0, 0.19, 0.43, 0.58, and 1) intermetallic compound system has been investigated by magnetization measurements and neutron scattering techniques to determine the effect of La doping on the magnetic ordering and exchange interaction between Cr ions. The structural and magnetic characterization in this series was first verified by x-ray diffraction and bulk magnetization measurements. The samples exhibit the known hexagonal perovskite structure (P63/mmc space group) and have a single magnetic phase according to magnetizationmeasurements. In this paper, the ferromagnetic ordering temperature for Cr evolves smoothly from a range of 68 K to 77 K for CeCrGe3 to a range of 91 K to 96 K for LaCrGe3 as La replaces Ce. Magnetization results indicate the formation of domain walls below the transition temperature for all Ce(1−x)LaxCrGe3 systems investigated. Neutron results indicate ordered magnetic Cr moments aligned along the c axis for the x = 1 LaCrGe3 system, as well as for x = 0.19, 0.43, and 0.58, which contrasts with the x = 0 CeCrGe3 where the moments order in the ab plane.
  • Resumo IPEN-doc 27308
    RE-doped Fe3O4 (RE = Eu, Gd, Er) nanoparticles for nanothermometry
    2019 - CORREA, E.; BOSCH-SANTOS, B.; SALES, T.; CABRERA-PASCA, G.; CORREA, B.S.; NETO, O.F.; CARBONARI, A.W.; OLESHKO, V.; DENNIS, C.
    Temperature affects every physical system, chemical reaction, and biological process. A new method, magnetic nanothermometry, is being explored to measure temperature throughout a volume. This method uses large changes in magnetization as function of temperature, which cannot be obtained with current magnetic nano-objects (MNO). To get a large magnetization change we have examined the magnetic properties of RE-doped Fe3O4 (RE = Eu, Gd, Er) MNO. Samples were synthesized by co-precipitation. For the doped material, RE+3 were chosen in order to replace the Fe+3 in the (Fe+2)(Fe+3)2O4 structure. Structural characterization was performed by X-ray diffraction and transmission electron microscopy. Hyperfine interaction parameters as a function of temperature (300 K to 873 K) were obtained by perturbed angular g-g correlation (PAC) spectroscopy using 111In(111Cd) as probe nuclei. To fit the PAC spectra, the 111Cd probes were considered to occupy three sites: tetrahedral, octahedral, and a third site where the probes are located at the nanoparticle surface [1]. The hyperfine magnetic field Bhf was calculated using the Larmor equation, and its behavior as a function of temperature follows a Brillouin-type transition. For example, the Curie temperature (TC) obtained for 5% Er-doped was approx. 846 K (FIG. 1), which is higher than the expected TC for pure Fe3O4 (approx. 722 K) [2]. Magnetization as a function of temperature shows a 70 % change in magnetization around 100 K for Er-doped Fe3O4 (FIG.2), which is an improvement in temperature on pure Fe3O4 (below 50 K) [3]. Current work is focused on correlating the temperature range in which the magnetization change occurs and determining if it depends on the dopant element.
  • Resumo IPEN-doc 26772
    Magnetic field at Ce impurities in La sites of LaBaMn2O6 double perovskites
    2019 - BOSCH-SANTOS, B.; NASCIMENTO, N.; SAIKI, M.; CORREA, E.L.; SALES, T.S.; PEREIRA, L.F.; CABRERA-PASCA, G.A.; CARBONARI, A.W.
    Magnetic behavior in LaBaMn2O6 double perovskite compounds has been investigated with various techniques, due to the rich variety of electromagnetic properties, such as a colossal magnetoresistance, charge and orbital ordering, and metal-insulator transition. In this paper, we have used a nuclear and short-range technique, the Perturbed Angular Correlation (PAC) spectroscopy, to investigate the magnetic hyperfine field at the 140Ce nucleus of Ce impurities occupying La sites. The radioactive 140La nuclei with a half-life of 40.8 h were produced by direct activation of natural La present in the samples through the irradiation with neutrons in the IEA-R1 nuclear research reactor of IPEN. The PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 10 K and 400 K. This double perovskite samples were synthesized by sol-gel route. The crystal structure was determined by X-ray diffraction and the analyses showed that this method produced perovskite oxides with cubic structure in Pm-3m space group. This phase occurs due to an oxygen deficiency. The local properties investigated by PAC spectroscopy revealed a ferromagnetic transition temperature above 300 K and an anomalous behavior of the temperature dependence of magnetic hyperfine field at La sites, which can be ascribed to the contribution of 4f band of Ce to Bhf at low temperatures due to the increase in its localized character.
  • Artigo IPEN-doc 26466
    Magnetic field at Ce impurities in La sites of La0.5Ba0.5MnO3 double perovskites
    2019 - BOSCH-SANTOS, B.; NASCIMENTO, N.M.; SAIKI, M.; CORREA, E.L.; SALES, T.S.N.; PEREIRA, L.F.D.; CABRERA-PASCA, G.A.; SAXENA, R.N.; SCHELL, J.; CARBONARI, A.W.
    Due to its rich variety of electromagnetic properties, such as a colossal magnetoresistance, charge and orbital ordering, and metal-insulator transition, the magnetic behavior in La0.5Ba0.5MnO3 double perovskite compounds has been investigated by several techniques, however more experimental data, especially from atomic resolution techniques, are still necessary to understand such complex behavior. In this paper, we have used a nuclear and short-range technique, the Perturbed Angular Correlation (PAC) spectroscopy, to investigate the magnetic hyperfine interaction at the 140Ce and 111Cd probe nuclei as impurities occupying La sites. This double perovskite samples were synthesized by Sol- Gel route. The crystal structure was determined by X-ray diffraction and the analyses showed that this method produced perovskite oxides with cubic structure in Pm-3m space group and the homogeneity was determined by Transmission Electron Microscopy (TEM). The local properties investigated by PAC spectroscopy revealed a ferromagnetic transition temperature above 300 K and a pure antiferromagnetic interaction below 100 K. Moreover, it also indicates an anomalous behavior of the temperature dependence of magnetic hyperfine field at La sites measured with 140Ce probe nuclei, which can be ascribed to the contribution of 4f band of Ce to Magnetic Hyperfine Field (Bhf) at low temperatures due to the increase in its localized character.