RODRIGO PIRES DA SILVA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 28365
    Three-dimensional CFD modeling of H2/O2 HT-PEMFC based on H3PO4-doped PBI membranes
    2021 - PANESI, A.R.Q.; SILVA, R.P.; CUNHA, E.F.; KORKISCHKO, I.; SANTIAGO, E.I.
    A complete non-isothermal model of a HT-PEMFC setup using a PBI/ H3PO4 membrane was developed, modeled, and solved using COMSOL Multiphysics. Polarization curves were simulated and compared to the corresponding experimental data. In this work, a serpentine flow field and an active area of 5 cm2 have been implemented in a computational fluid dynamics (CFD) application. The model predicts water vapor transport, mass concentration of H3PO4, temperature, and membrane current density distribution. In this model, the anode feed is pure hydrogen, and oxygen is introduced at the cathode side. The heat transfer model was coupled with the electrochemical and mass transport; a particular heating configuration is investigated for temperature distribution, emphasizing the membrane. The models showed consistency and were used to investigate the behavior of H3PO4 concentration and all transport characteristics. The concentration of phosphoric acid decreases with increasing temperature and relative humidity and the diffusive flux of water vapor increases with the decrease of the operating voltage. Two different configurations of inlet and outlet flow channels were analyzed and the results were compared.
  • Artigo IPEN-doc 27193
    SAXS signature of the lamellar ordering of ionic domains of perfluorinated sulfonic-acid ionomers by electric and magnetic field-assisted casting
    2020 - SILVA, JAQUELINE S. da; CARVALHO, SABRINA G.M.; SILVA, RODRIGO P. da; TAVARES, ANA C.; SCHADE, ULRICH; PUSKAR, LJILJANA; FONSECA, FABIO C.; MATOS, BRUNO R.
    At present, small angle X-ray scattering (SAXS) studies of perfluorinated sulfonic-acid ionomers (PFSAs) are unable to fully determine the true shape of their building blocks, as recent SAXS modelling predicts disk- and rod-like nanoionic domains as being equally possible. This scenario requires evidence-based findings to unravel the real shape of PFSA building blocks. Herein, a SAXS pattern signature for a lamellar nanophase separation of the ionic domains of Nafion is presented, backed by mid and far infrared spectroscopy (MIR and FIR) and wide angle X-ray scattering (WAXS) data of Nafion in different ionic forms, a broad range of ionic phase contents (EW ~ 859–42 252 g eq-1) and temperatures. The study indicates that the lamellar arrangement of the ionic domains is the most representative morphology that accounts for the physical properties of this ionomer. The lamellar SAXS reflections of Nafion are enhanced in electric and magnetic field-aligned membranes, as confirmed by atomic force microscopy (AFM). Electric and magnetic field-assisted casting of Nafion allowed producing nanostructured and anisotropic films with the lamellas stacked perpendicularly to the field vector, which is the direction of interest for several applications. Such nanostructured Nafion membranes are bestowed with advanced optical and proton transport properties, making them promising materials for solar and fuel cells.