TATIANE DA SILVA NASCIMENTO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 17
  • Resumo IPEN-doc 29751
    Magnetic properties of Er-doped Fe3O4 nanoparticles studied by perturbed angular spectroscopy
    2019 - CORREA, E.L.; BOSCH-SANTOS, B.; SALES, T.S.N.; CABRERA-PASCA, G.A.; CORREA, B.S.; CARBONARI, A.W.; OLESHKO, V.P.; DENNIS, C.L.
  • Resumo IPEN-doc 28753
    DFT-based Calculations of the Magnetic Hyperfine Interactions at Cd Sites in RECd Compounds with the FP-LAPW ELK Code
    2020 - SCALISE, LEVY; BURIMOVA, ANASTASIA; PEREIRA, LUCIANO F.; FERREIRA, WANDERSON; SALES, TATIANE; GONÇALVES, VITOR; CABRERA-PASCA, GABRIEL; SAXENA, RAJENDRA N.; CARBONARI, ARTUR W.
    In this work we tested the methodology to map magnetic hyperfine interactions in strongly correlated materials using a free open-source all-electron FP-LAPW code ELK. The RECd (RE = Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) series was chosen as a laboratory system, since an almost complete set of experimental data on the hyperfine parameters at Cd sites in these compounds was acquired previously with an extremely sensitive TDPAC technique [1]. Moreover, these TDPAC results were complemented with WIEN2k DFT calculations that allow a qualitative comparison of the two codes. The ELK calculations were performed with PBE96 GGA-type exchange-correlation functional, the cases of scalar relativistic approximation and fully relativistic relaxation of the states were treated separately. A dense k-mesh and adequate R(MT)K(max) were chosen in both cases to comply with the sensitivity of magnetic hyperfine parameters. We emphasize that the exploited version of ELK accounted for the contact field only. Yet, as it is the only contribution expected for Cd site in RECd, the values of B(hf), albeit generally overestimated, have shown reasonable agreement with the experiment (Fig. 1). Spin-orbit coupling taken into account led to a decrease in deviation from experimental data. An addition of the Hubbard-like term was essential to reach a tolerable result for CeCd. This behavior may be associated with a weaker localization of the 4f electron of Ce. Concerning the potential sources of discrepancy between our ELK results and those previously obtained with WIEN2k, (i) a different way of accounting for relativistic corrections, (ii) the use of GGA (our ELK study) versus LDA (previous WIEN2k study) and other details are discussed.
  • Resumo IPEN-doc 28752
    Synthesis and characterization of Fe3O4-HfO2 nanoparticles by magnetization and hyperfine interactions measurements
    2020 - MATOS, IZABELA T.; SALES, TATIANE S.; CABRERA-PASCA, GABRIEL; BURIMOVA, ANASTASIA; SAXENA, RAJENDRA N.; PEREIRA, LUCIANO F.; OTUBO, LARISSA; CARBONARI, ARTUR W.
    Nanoparticles (NPs) that combine biocompatibility and enhanced physical characteristics for biomedical applications are currently an area of intense scientific research. Hafnium oxide NPs is an innovative approach in the anticancer treatment by radiotherapy due to their low toxicity and enhancement of local dose in the tumor reducing the total radiation dose for the patient [1]. The combination of this amazing property with the excellent magnetic hyperthermia performance of Fe3O4 NPs can produce a promising nanomaterial for cancer therapy. In the present work, we have synthesized NPs samples of Fe3O4 doped with 10%Hf and HfO2 doped with 10% Fe by chemical procedures. The samples had their morphological, structural, and magnetic properties characterized by some results being displayed in Fig. 1. The crystal structure of the samples was characterized by X-ray Diffraction (XRD), whose results present a single phase. Transmission Electron Microscopy (TEM) images show spherical and hexagonal NPs with an average size of 12 nm as displayed in Fig. 2. The magnetic property was investigated by magnetization measurement. The results from the temperature dependence of ZFC-FC magnetization show a large peak in the ZFC curve corresponding to a broad distribution of blocking temperatures as shown in Fig. 1(b). Fortunately, when irradiated with neutrons in a research reactor, the nuclear reaction 180Hf(n,γ)181Hf yields the probe nucleus 181Hf(181Ta) used by the perturbed angular correlations (PAC) technique to measure hyperfine interactions. Both samples show electric quadrupole interaction characteristics of the HfO2 phase indicating that the Fe replaces Hf in HfO2 NPs, but rather than substituting Fe, Hf form HfO2 NPs diluted in Fe3O4 NPs. Moreover, a pure time-dependent magnetic dipole interaction below 300 K was observed for Fe3O4 NPs mixed with 10% of HfO2.
  • Resumo IPEN-doc 28751
    Annealing effect on the structural and local magnetic properties of nickel ferrite nanoparticles studied by hyperfine interaction measurements
    2020 - RODRIGUES, PRISCILA S.; MATOS, IZABELA T.; SALES, TATIANE S.; BURIMOVA, ANASTASIA; CABRERA-PASCA, GABRIEL; PEREIRA, LUCIANO F.; SAXENA, RAJENDRA N.; OTUBO, LARISSA; CARBONARI, ARTUR W.
    Nickel ferrite in the form of nanoparticles is a technologically important material that can be applied for the production of biosensors, catalysts, drug delivery, and magnetic resonance contrast agents. In this work NiFe O samples comprising spherical nanoparticles of ~6 nm in diameter have been synthesized via a thermal decomposition route. The quality control of the samples was carried out with conventional techniques including X-ray diffraction and transmission electron microscopy. Post-synthesis XRD pattern revealed textured spinel NiFe O . Local magnetic properties were examined with Time Differential Perturbed Angular Correlation (TDPAC) spectroscopy within the 12 - 773K temperature range with In( Cd) probe introduced into the samples at synthesis. Quasi-static magnetic properties were observed (including above room temperature), as expected due to the small time window of TDPAC. The TDPAC results shown in Fig. 1 were analyzed using a model with combined electric quadrupole and magnetic dipole interactions. An expressive dynamic interaction was observed upon heating after synthesis. A theoretical model based on the Brillouin function for different ionic moments was applied to study the evolution of the hyperfine magnetic field with temperature (see Fig. 1-2) and allowed to attribute the magnetic interaction to the probe location at Fe3+ site. Site occupancy and the interplay between magnetic and structural properties are discussed with respect to application perspectives.
  • Resumo IPEN-doc 28750
    Local inspection of magnetic properties in GdMnIn by measuring hyperfine interactions
    2020 - CABRERA-PASCA, G.A.; MAGNO, J.F.; FERREIRA, W.L.; CAMPOS, A.C.; BOSCH-SANTOS, B.; SALES, T.S.N.; PEREIRA, L.F.D.; BURIMOVA, A.; SAXENA, R.N.; FREITAS, R.S.; CARBONARI, A.W.
    GdMn2 is a member of a series of Laves phase containing a rare-earth element and a magnetic 3dtransition metal with very peculiar magnetic properties[1]. Doping with a non-magnetic element such as indium affects these properties[2,3]. GdMnIn is reported to crystalize in the hexagonal MgNi2-type structure presenting a spin-glass behavior with no magnetic order attributed to the triangular spin frustration of magnetic ions[3]. The observed absence of long-range interactions by magnetization measurements along with the almost impossible measurements with neutron diffraction due to the presence of Gd with very high neutron absorption cross section makes the investigation of local exchange interactions in this compound very difficult. In the present work, measurements of hyperfine interactions at In sites using 111In(111Cd) probe nuclei were carried out by perturbed angular correlations (PAC) technique to investigate the local magnetic exchange in GdMnIn compound. Results displayed in Fig. 1 for the behavior of the major component (Vzz) of the electric field gradient (efg) tensor and the distribution of electric quadrupole frequency () show a strong instability of the electronic environment of In sites when temperature decreases indicating a Mn-In disorder. The weak magnetic hyperfine field at In sites also shown in Fig.1 with an anomalous temperature dependence below around 140 K along with the increase in the angle between Bhf and Vzz directions suggest a weak long-range exchange interaction.
  • Resumo IPEN-doc 28567
    Cd impurities in Vanadium oxides
    2021 - BURIMOVA, ANASTASIA; LEITE NETO, OSMAR F.; BOSCH-SANTOS, BRIANNA; CORREA, EDUARDO L.; PEREIRA, LUCIANO F.D.; SALES, TATIANE S.N.; RIBEIRO JUNIOR, IBERE S.; COSTA, MESSIAS S.; COSTA, CLEIDILANE; DANG, THANH T.; ZYABKIN, DMITRY; VAN STIPHOUT, KOEN K.F.; GERAMI, ADELEH M.; CORREIA, JOAO M.; SCHELL, JULIANA; CARBONARI, ARTUR W.
    The number of metastable phases, the capriciousness at changing external conditions, and lack of accurate description of local behavior already resulted in severe misinterpretation of experimental outcomes for vanadium oxides[1–3]. The scope of already implemented and potential applications of vanadium oxides is, indeed, impressive, particularly as a battery cathode for energy storage[ 4]. Doping is widely exploited as a means of application-oriented tuning of the material properties. The properties of each particular phase may be tuned by doping to satisfy specific requirements and/or improve the functional performance. In the work here reported, electric quadrupole interaction on 111mCd nuclei implanted in vanadium pentaoxide doped with different concentrations of Cd were measured with time-differential perturbed angular correlations (TDPAC). Pure V2O5 as well as doped with 1%, 5%, and 10% of Cd were measured at different temperatures. To correlate the results with the possible formation of different phases and compounds, samples of VO2, CdV2O6, and Cd2V2O7 were also measured. The intention is to provide a comprehensive description, at an atomic level, of the doping effects on the local crystal structure and the electronic structure around the impurity and the consequences on the properties of the host oxides. Preliminary results show that the probability of formation of cadmium vanadates is low but the temperature and atmosphere of measurements have an important effect on the local scale.
  • Resumo IPEN-doc 27982
    Investigation of HfO2 and ZrO2, separately and also in the form of mixtures, pure and doped with Si
    2019 - NASCIMENTO, CARLOS E.; SALES, TATIANE da S.N.; CARBONARI, ARTUR W.
    The HfO2 has been used in several technological applications, one of which is the replacement of silicon oxide as the material for the door in the manufacture of CMOS-FET devices [1]. ZrO2 also has several applications, being more used in the form of solid electrolytes and oxygen sensors and also in electrochemical pumps. Due to the similarity of the size and properties, that is found in the proportion of 1 to 2 % in the ore of this one. Since the ions of these elements are nearly identical in size, the separation is difficult, and is in most cases unnecessary due to the similarity of its properties [2]. Doping with other elements improves the specific characteristics of HfO2 and ZrO2, making them useful for different applications and extending their uses in CMOS-FET devices. It also reduces the ZrO2 defects, such as its low resistance to high temperatures, causing in the formation of polycrystalline films and decreasing the dielectric constant that can occur due to leakage current in the grain boundaries, making it necessary to use an amorphous interface to reduce losses. In addition, grain size and orientation change throughout a polycrystalline film, which can cause variations in the value of producing irreproducible properties [3]. In this project the atomic scale investigation of HfO2 and ZrO2 was carried out separately and also in the form of pure, doped mixtures with Si [4]. They were used (RBS), X-ray Diffraction [5] and SEM for caracterization. The PAC technique was used to measure the hyperfine parameters, such as the electric field gradient (Vzz), the asymmetric parameter of the electric field gradient (η) and the possible magnetic hyperfine field over a wide temperature range (from 10 to 1300 K). The measurements were performed in order to correlate the results with the behavior of the characteristic properties of each compound to understand the microscopic mechanisms that give rise to these phenomena [6].
  • Resumo IPEN-doc 27981
    Study of hyperfine interactions in Perovskite structure CaTiO3 with perturbed angular correlation spectroscopy
    2019 - LEITE NETO, O.F.S.; SANTOS, B.S.; NARESSI, A.L.E.; SALES, T.S.N.; SAXENA, R.N.; CARBONARI, A.W.
    Ceramic materials of the perovkista were identified as candidates for immobilization of medium and high levels of radioactive waste due to the fact that they are thermodynamically chemically and physically stable. Because it is a nuclear technique, PAC spectroscopy has great precision and efficiency in the measurement of local hyperfine fields on an atomic scale, constituting an ideal tool for the investigation of the atomic origin of structural phenomena, such as the influence of defects in the macroscopic properties of many materials or the local neighborhood of metallic atoms in the oxide structure. The samples has been prepared by sol-gel method and characterized by X-ray diffraction. In this study the time differential perturbed angular correlation (PAC) spectroscopy was used to study the structure of CaTiO3 and the possible defects made by radiation exposure. The probe nucleus used in this research was 111Cd. The PAC method is based on the hyperfine interaction of nuclear moments of the probe with extra nuclear magnetic fields or electric field gradients (EFGs). In the case of quadrupolar electric interaction, the experimental measurement gives the quadrupolar frequency νQ with respective distribution δ as well as the asymmetry parameter η of EFG. The γ-γ PAC measurements were carried out using a standard set up with four conical BaF2 detector scintillators with a time resolution of 0.6 ns (FWHM).
  • Resumo IPEN-doc 27308
    RE-doped Fe3O4 (RE = Eu, Gd, Er) nanoparticles for nanothermometry
    2019 - CORREA, E.; BOSCH-SANTOS, B.; SALES, T.; CABRERA-PASCA, G.; CORREA, B.S.; NETO, O.F.; CARBONARI, A.W.; OLESHKO, V.; DENNIS, C.
    Temperature affects every physical system, chemical reaction, and biological process. A new method, magnetic nanothermometry, is being explored to measure temperature throughout a volume. This method uses large changes in magnetization as function of temperature, which cannot be obtained with current magnetic nano-objects (MNO). To get a large magnetization change we have examined the magnetic properties of RE-doped Fe3O4 (RE = Eu, Gd, Er) MNO. Samples were synthesized by co-precipitation. For the doped material, RE+3 were chosen in order to replace the Fe+3 in the (Fe+2)(Fe+3)2O4 structure. Structural characterization was performed by X-ray diffraction and transmission electron microscopy. Hyperfine interaction parameters as a function of temperature (300 K to 873 K) were obtained by perturbed angular g-g correlation (PAC) spectroscopy using 111In(111Cd) as probe nuclei. To fit the PAC spectra, the 111Cd probes were considered to occupy three sites: tetrahedral, octahedral, and a third site where the probes are located at the nanoparticle surface [1]. The hyperfine magnetic field Bhf was calculated using the Larmor equation, and its behavior as a function of temperature follows a Brillouin-type transition. For example, the Curie temperature (TC) obtained for 5% Er-doped was approx. 846 K (FIG. 1), which is higher than the expected TC for pure Fe3O4 (approx. 722 K) [2]. Magnetization as a function of temperature shows a 70 % change in magnetization around 100 K for Er-doped Fe3O4 (FIG.2), which is an improvement in temperature on pure Fe3O4 (below 50 K) [3]. Current work is focused on correlating the temperature range in which the magnetization change occurs and determining if it depends on the dopant element.
  • Resumo IPEN-doc 27091
    Study of the hyperfine parameters in Si and Fe doped HfO2 nanoparticles by perturbed angular correlation spectroscopy
    2019 - SALES, T.S.N.; SAXENA, R.N.; CARBONARI, A.W.
    Nanoparticles (NPs) have attracted a great deal of interest due to their desirable properties suited for technological and medical applications. Hafnium dioxide (HfO2) can be used in both areas. HfO2 NPs were synthesized through sol-gel method, which allows an efficient and controlled doping of HfO2. In this work, we have investigated the effect of (5% at.) doping of HfO2 NPs with Si and Fe by measuring hyperfine interactions at 181Ta probe nuclei on Hf sites using the perturbed γ–γ angular correlations (PAC) spectroscopy. The structural and morphological analysis was carried out by X-ray diffraction (XRD) and transmission microscopy (TEM) techniques. For both samples, XRD results showed a single phase with the expected monoclinic structure and TEM results indicated NPs with an average diameter of approximately 30 nm. The hyperfine parameters were measured in the temperature range of 200-900 ºC. The radioactive 181Hf was produced by irradiating the samples with neutrons in the IEA-R1 reactor at IPEN. The samples were enclosed in the alumina tube instead of usual silica tube to avoid the formation of hafnon. Results of both samples showed that probe nuclei occupy three sites with different electric quadrupolar interactions. The major fractions (~65%), in both cases however, showed the well-known monoclinic structure of pure HfO2 [1]. The characterization of one of the minor fractions in Si doped HfO2 showing a tetragonal structure between 400-600 ºC is discussed.