TATIANE DA SILVA NASCIMENTO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • Artigo IPEN-doc 28363
    The effect of Er doping on local structure of magnetite nanoparticles
    2021 - RODRIGUES, PRISCILA S.; BURIMOVA, ANASTASIA; SALES, TATIANE S.N.; FILHO, ARNALDO A.M.; OTUBO, LARISSA; SAXENA, RAJENDRA N.; CARBONARI, ARTUR W.
    In this work Fe3O4:Er nanoparticles (NPs) with the characteristic size of ~ 11 nm were synthesized via classic co-precipitation method. Electron microscopy and X-ray diffraction were employed to probe the morphology and structure of the samples. Results revealed that samples synthesized in the Fd-3mZ structure with lattice constant close to that of pure magnetite. 111In probe generator was incorporated at synthesis in order to map the evolution of hyperfine magnetic field with temperature using time differential perturbed angular correlation (TDPAC) spectroscopy. The TDPAC results are discussed in terms of the effect of Er dopant on the magnetic properties and local structure of the NPs.
  • Artigo IPEN-doc 27751
    Synthesis and characterization of Fe3O4-HfO2 nanoparticles by hyperfine interactions measurements
    2021 - SALES, T.S.N.; BURIMOVA, A.; RODRIGUES, P.S.; MATOS, I.T.; CABRERA-PASCA, G.A.; SAXENA, R.N.; PEREIRA, L.F.D.; OTUBO, L.; CARBONARI, A.W.
    Nanoparticles (NPs) that combine biocompatibility and enhanced physical characteristics for biomedical applications are currently an area of intense scientific research. Hafnium oxide NPs are an innovative approach in the anticancer treatment by radiotherapy due to their low toxicity and enhancement of local dose in the tumor reducing the total radiation dose for the patient. The combination of this property with the excellent magnetic hyperthermia performance of Fe3O4 NPs can produce a promising nanomaterial for cancer therapy. In this work, we attempted to synthesize nanoscale samples of HfO2 doped with nominal 10 at.% Fe, and Fe3O4 doped with Hf at 10 at.% level using simple chemical routes. The crystal structure of the samples was characterized by X-ray diffraction. The material was irradiated with neutrons in a research reactor, the nuclear reaction 180Hf(n, γ)181Hf yielding the probe nucleus 181Hf(181Ta) used in the perturbed angular correlations experiments to measure hyperfine interactions. Despite their immediate response to the external magnetic field, at local level both samples showed only electric quadrupole interaction typical of the monoclinic hafnia indicating that Fe replaces Hf in HfO2 NPs, but, rather than substituting Fe, Hf enters magnetite in the form of HfO2 clusters. Transmission Electron Microscopy was exploited to study the morphology of these complex systems, as well as to localize hafnia clusters and understand the nature of their coupling to Fe3O4 specks.
  • Artigo IPEN-doc 25614
    Low temperature synthesis of pure and Fe-doped HfSiO4: Determination of Si and Fe fractions by neutron activation analysis
    2019 - SALES, T.N.S.; BOSCH-SANTOS, B.; SAIKI, M.; BURIMOVA, A.; PEREIRA, L.F.D.; SAXENA, R.N.; CARBONARI, A.W.
    A new method of synthesis of hafnium silicate HfSiO4 (also known as hafnon) is reported. We observed a selfcontrolled incorporation of SiO2 from the quartz tube in which a sample of hafnium oxide nanoparticles was heated. This approach was then adapted to Fe-doped hafnon production. Sample structure, morphology and composition were characterized by X-ray diffraction, electron microscopy and neutron activation analysis. Diffraction data has shown that lattice parameters of doped HfSiO4 thus obtained are very close to those previously known for bare hafnon. The hafnon-like phase stabilized at T=900 °C which is about 500 °C lower than the corresponding transition of bare bulk hafnium silicate. The fractions of Si and Fe in the composite matrices were determined with neutron activation analysis. These results completed by X-ray diffraction data allowed to assume that (i) Fe initially substituted Hf in the HfO2 lattice; (ii) there was no migration of iron atoms from Hf to Si sites at the formation of hafnon-like phase; (iii) doped and undoped hafnium oxide has taken as much Si from the quartz as was needed for the arrangement of Fe1-xHfxSiO4 tetragonal system, 0≤x<0.2. Our results are consistent with those obtained for similar materials, such as metal (Fe,V) doped zircon, where the dopant also demonstrated catalytic effect on phase stabilization.
  • Artigo IPEN-doc 23107
    Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles
    2017 - SALES, T.S.N.; CAVALCANTE, F.H.M.; BOSCH-SANTOS, B.; PEREIRA, L.F.D.; CABRERA-PASCA, G.A.; FREITAS, R.S.; SAXENA, R.N.; CARBONARI, A.W.
    In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).
  • Artigo IPEN-doc 24061
    Effect of silicon doping in HFO2 nanoparticles from an atomic view
    2017 - SALES, TATIANE S.N.; CARBONARI, ARTUR W.
    We have prepared the Hafnium Oxide (HfO2) nanoparticles (NPs) doped with 5% at. of silicon (Si) using the sol-gel chemical method. Nuclear quadrupole interactions at Hf sites were investigated by perturbed γ–γ angular correlations (PAC) spectroscopy using 181Ta as probe nuclei. This method is based on the hyperfine interactions between the nuclear moments of the probe nuclei with extra-nuclear magnetic fields or electric field gradients (EFGs). In the case of quadrupolar electric interactions, experimental measurements give the quadrupole frequency Q with respective distribution () as well the asymmetry parameter  of of of the EFG. The hyperfine parameters were measured within the range from 200°C to 900°C. The structural and morphological characterization of the samples were carried out by X-ray diffraction and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD). PAC results show a major site fraction of probe nuclei, that was assigned to the monoclinic phase of HfO2, with approximately 60% population, which increases when the temperature of heat treatment increases. The XRD results showed a single phase with the expected monoclinic structure for the as-prepared samples indicating that Si atoms are at substitutional Hf sites.