LILIAN NINOSHA MURIEL BRAGUIN

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • Artigo IPEN-doc 28361
    A study on corrosion resistance of ISO 5832-1 austenitic stainless steel used as orthopedic implant
    2020 - BRAGUIN, L.N.M.; SILVA, C.A.J. da; BERBEL, L.O.; VIVEIROS, B.V.G. de; ROSSI, J.L.; COSTA, I.; SAIKI, M.
    The ISO 5832-1 austenitic stainless steel used as biomaterial is largely applied in the area of orthopedics, especially in the manufacture of implants, such as temporary or permanent replacement of bone structures. The objective of this study was to evaluate the localized corrosion resistance of the ISO 5832-1 stainless steel used in orthopedic implants by electrochemical tests in two different solutions. The results of this study are of great interest to evaluate the corrosion of metallic implants that can result in the release of corrosion products into bodily fluids causing possible adverse biological reactions. The determination of the chemical elements in the composition of the ISO 5832-1 stainless steel was performed by neutron activation analysis (NAA). The samples for electrochemical tests were grinded with silicon carbide paper up to #4000 finishing, followed by mechanical polishing with diamond paste. The open circuit potential measurements and anodic polarization curves were obtained in solution of 0.90 wt. % of NaCl and of simulated body fluid (SBF). The results indicated that the ISO 5832-1 stainless steel presented a high resistance to crevice corrosion in simulated body fluid solution but high susceptibility to this form of corrosion in the chloride solution.
  • Artigo IPEN-doc 27867
    Neutron activation analysis of austenitic stainless steel used as biomaterial
    2021 - BRAGUIN, L.N.M.; SILVA, C.A.J.; COSTA, I.; SAIKI, M.
    Austenitic stainless steel alloys, mainly those produced according to ISO 5832-1, have received much attention due to their promising characteristics to be used as biomaterials. The aim of this study was to establish the proper conditions of neutron activation analysis (NAA) in order to determine chemical elements in a sample of ISO 5832-1 stainless steel. These determinations are of great interest for further evaluation of its corrosion resistance and of cytotoxicity of corrosion products. For the analyses, chips of ISO 5832-1 austenitic stainless steel were obtained. Aliquots of this material were weighed in polyethylene involucres and irradiated together with synthetic element standards at the IEA-R1 nuclear research reactor. Short and long irradiations were carried out using thermal neutron flux of about 4.5 x 1012 n cm-2 s-1. Quality control of the results was performed by analyzing two certified reference materials (CRMs). The elements concentrations of Cr, Cu, Mn, Mo and Ni obtained in the ISO 5832-1 austenitic alloy are within the specification values of this material. Besides, the elements As, Co, V and W were determined in this alloy. The sensitivity of the technique was verified by the determination of detection and quantification limits. In the case of CRMs, their results presented precision and accuracy for most of elements with relative standard deviations and relative errors lower than 15 %. Results obtained in this study demonstrated the viability of applying NAA in the analysis of the ISO 5832-1 stainless steel alloy.
  • Artigo IPEN-doc 26147
    Elemental determination of austenitic stainless steel alloy used as biomaterial by neutron activation analysis
    2019 - BRAGUIN, LILIAN N.M.; COSTA, ISOLDA; SAIKI, MITIKO
    Austenitic stainless steel alloys, mainly those produced according to ISO 5832-1, have received much attention due to their promising characteristics to be used as biomaterials. The aim of this study was to establish the proper conditions of neutron activation analysis (NAA) in order to determine chemical elements in a sample of ISO 5832-1 stainless steel. These determinations are of great interest for further evaluation of its corrosion resistance and of cytotoxicity of corrosion products. For the analyses, chips of ISO 5832-1 austenitic stainless steel were obtained. Aliquots of this material were weighed in polyethylene involucres and irradiated together with synthetic element standards at the IEA-R1 nuclear research reactor. Short and long irradiations were carried out using thermal neutron flux of about 4.5 x 1012 n cm-2 s -1. Quality control of the results was performed by analyzing two certified reference materials (CRMs). The elements concentrations of Cr, Cu, Mn, Mo and Ni obtained in the ISO 5832-1 austenitic alloy are within the specification values of this material. Besides, the elements As, Co, V and W were determined in this alloy. The sensitivity of the technique was verified by the determination of detection and quantification limits. In the case of CRMs, their results presented precision and accuracy for most of elements with relative standard deviations and relative errors lower than 15 %. Results obtained in this study demonstrated the viability of applying NAA in the analysis of the ISO 5832-1 stainless steel alloy.