DIEGO SILVERIO DA SILVA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 26431
    Double line waveguide amplifiers written by femtosecond laser irradiation in rare-earth doped germanate glasses
    2020 - SILVA, DIEGO S. da; WETTER, NIKLAUS U.; KASSAB, LUCIANA R.P.; ROSSI, WAGNER de; ARAUJO, MARIANA S. de
    We report the production of active double waveguides in Er/Yb doped GeO2-PbO glasses, by direct femtosecond laser writing. The glasses were produced using the melt-quenching technique and the active waveguides were written using 30 fs laser pulses, at 800 nm, with writing speed of 0.06 mm/s and pulse energy of 32 μJ. The photo-induced negative refractive index change was of 􀀀 7.4 � 10􀀀 3. The Er/Yb doped sample showed a relative gain (signal enhancement of 7.5 dB/cm, for 105 mW of 980 nm pump power. The relative gain compensates both, the propagation losses and the absorption losses, and a positive maximum internal gain of 4.6 dB/cm can be obtained at the signal wavelength of 1550 nm. The results obtained in present work demonstrate that Er/Yb glasses are promising materials for the fabrication of integrated amplifiers, lossless components and lasers based on germanate glasses.
  • Artigo IPEN-doc 24381
    Production and characterization of femtosecond laser-written double line waveguides in heavy metal oxide glasses
    2018 - SILVA, DIEGO S. da; WETTER, NIKLAUS U.; ROSSI, WAGNER de; KASSAB, LUCIANA R.P.; SAMAD, RICARDO E.
    We report the fabrication and characterization of double line waveguides directly written in tellurite and germanate glasses using a femtosecond laser delivering 30 mu J, 80 fs pulses at 4 kHz repetition rate. The double line waveguides produced presented internal losses inferior to 2.0 dB/cm. The output mode profile and the M-2 measurements indicate multimodal guiding behavior. A better beam quality for the GeO2 - Pbo waveguide was observed when compared with TeO2 - ZnO glass. Raman spectroscopy of the waveguides showed structural modification of the glassy network and indicates that a negative refractive index modification occurs at the focus of the laser beam, therefore allowing for light guiding in between two closely spaced laser written lines. The refractive index change at 632 nm is around 10(-4), and the structural changes in the laser focal region of the writing, evaluated by Raman spectroscopy, corroborated our findings that these materials are potential candidates for optical waveguides and passive components. To the best of our knowledge, the two double line configuration demonstrated in the present work was not reported before for germanate or tellurite glasses.