LARISSA OLIVEIRA BERBEL

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 8 de 8
  • Resumo IPEN-doc 28900
    The corrosion behavior on AA2050-T84 and AA7050-T7451 welded and non-welded by FSW
    2021 - VIVEIROS, BARBARA V.G. de; BERBEL, LARISSA O.; DONATUS, UYIME; COSTA, ISOLDA
    In this work, the corrosion resistance of the AA2050-T84 and AA7050-T7451 alloys welded by FSW and non-welded was investigated using chloride solutions. The corrosion resistance, microstructure and microhardness were studied. Microhardness measurements at the cross section and at the top surface of the weld identified significant differences between the various zones resulting from FSW. Characterization of the corrosion resistance was carried out by electrochemical and immersion tests. Localized electrochemical techniques were used in this work, specifically scanning vibrating electrode technique (SVET) and scanning ion-selective electrode technique (SIET). The results showed that the most electrochemically active zone at of the welded alloys was the thermomechanically affected zone (TMAZ). This zone corresponds to the transition between the two alloys. In the top surface of the welded alloys, besides the TMAZ, the heat affected zone (HAZ) was also highly active corresponding to the transition between zones of the AA7050. This was due to the formation of hardening precipitates in the HAZ of the AA7050. In the cross-section, the high activity related to the TMAZ was due to the galvanic coupling between the two alloys where the AA7050 alloy acted as anodic zones, and the AA2050, as the cathodic ones. When the two alloys, AA2050 and AA7050, were exposed separately to 0.005 mol.L-1 NaCl or 3.5 (wt%) NaCl solutions, the AA2050 alloy showed higher electrochemical activity compared to the AA7050 alloy which was due to the higher content of active micrometric precipitates in the AA2050 alloy relatively to the AA7050. However, when the alloys were coupled, the AA2050 was cathodically protected by the AA7050 alloy.
  • Resumo IPEN-doc 27324
    Estudo do comportamento frente à corrosão da liga de magnésio AZ31 de uso em implantes temporários utilizando soluções simuladoras de fluidos corpóreos
    2019 - SILVA, C.A.J.; BRAGUIN, L.N.M.; VIVEIROS, B.G.; BERBEL, L.O.; ROSSI, J.L.; COSTA, I.; SAIKI, M.
    Atualmente, ligas de magnésio estão ganhando grande interesse para aplicações médicas devido a sua propriedade de degradação no corpo humano, principalmente para aplicações de interesse como stents cardiovasculares e próteses ortopédicas. Estes implantes temporários fornecem uma estabilidade mecânica necessária para o reparo e corroem completamente após o tempo de vida útil e fim do tratamento. Contudo, uma dificuldade na aplicação destes materiais na indústria de biomateriais é a corrosão antecipada e precoce à cura celular. Amostras da liga de magnésio AZ31 foram cortadas em lascas e a técnica escolhida para análise química elementar foi a Análise por Ativação com Nêutrons (NAA). Irradiações de curta e longa duração foram realizadas nas amostras juntamente com padrões sintéticos no reator IEA-R1 em um fluxo de nêutrons térmicos abaixo de 4,0x1012 n cm-2s-1. Concentrações dos elementos As, La, Mg, Mn, Na, Sb e Zn foram determinadas na liga AZ31, calculadas pelo método comparativo. Para os ensaios de corrosão, as amostras foram limpas com álcool etílico, acetona e água purificada MilliQ por agitação ultrassônica, e, em seguida foram lixadas com lixas de SiC com granulometria de #500, #800, #1200, #2000 e #4000. Testes de visualização em ágar-ágar e imersão foram realizados em solução de cloreto de sódio 0,90 % (massa), solução tampão de fosfato (PBS) e solução simuladora de fluidos corpóreos (SBF) utilizando fenolftaleína como indicador ácido-base. A observação das superfícies das amostras, antes e após exposição às soluções, foi realizada por microscopia óptica (MO) e microscopia eletrônica de varredura (MEV). A superfície também foi observada após remoção dos produtos de corrosão por desmutting e irradiação para análise quantitativa pela técnica NAA. Visualizações em gel ágarágar revelaram aumento do pH local proveniente da liberação de íons hidroxila da reação catódica e menor liberação de íons ocorreu em SBF em comparação às soluções de NaCl e PBS. As micrografias da superfície evidenciaram a formação instantânea de uma camada de produtos de corrosão após uma hora de ensaio e o desmutting revelou microcavidades caracterizadas por pites.
  • Resumo IPEN-doc 27323
    Estudo da resistência à corrosão do aço inoxidável austenítico ISO 5832-1 utilizado como implante ortopédico
    2019 - BRAGUIN, L.N.M.; SILVA, C.A.J.; BERBEL, L.O.; COSTA, I.; SAIKI, M.
    O aço inoxidável austenítico ISO 5832-1 utilizado como biomaterial é muito aplicado na área de ortopedia, especialmente na fabricação de implantes, como substituição temporária ou permanente de estruturas ósseas. Este aço apresenta biocompatibilidade, alta resistência mecânica, resistência à corrosão e baixo custo quando comparado a outros biomateriais, como ligas de titânio e de Cr-Co. O objetivo deste estudo foi avaliar a resistência à corrosão localizada do aço inoxidável ISO 5832-1 utilizado em implantes ortopédicos por ensaios eletroquímicos em duas soluções diferentes. Este estudo é de grande interesse para avaliar a corrosão dos implantes metálicos que podem prejudicar a estrutura do biomaterial e liberar produtos de corrosão nos fluidos corpóreos causando possíveis reações biológicas adversas. A determinação dos elementos químicos da composição do aço inoxidável austenítico ISO 5832- 1 foi realizada por análise por ativação com nêutrons (NAA). Para estas análises foram obtidas lascas deste material. Cerca de 50 mg de amostra foram pesadas em envelopes de polietileno e irradiados junto com padrões sintéticos de elementos. Irradiações de curta e longa duração foram realizadas no reator nuclear de pesquisa, IEA-R1, utilizando um fluxo de neutrons térmicos de cerca de 4,5 x 10^12 n cm^-2 s^-1. Para os ensaios eletroquímicos, as amostras de liga foram lixadas com lixas de SiC de granulometria #320, #500, #1200, #2000 e #4000 e polidas com pasta de diamante de 1μm. As medidas de potencial de circuito aberto e polarização potenciodinâmica catódica e anódica foram realizadas em solução de 0,90 % (massa) de NaCl e de solução simuladora de fluido corpóreo (SBF). A alta resistência à corrosão deste aço foi atribuída à formação de filme de óxido passivo que reduz a taxa de corrosão, dificultando o transporte de íons metálicos e de elétrons, que provocam a possível liberação de íons tóxicos para o corpo humano.
  • Resumo IPEN-doc 26841
    The corrosion resistance between AA2050-T84 and AA7050-T7451 welded by friction stir weld
    2019 - VIVEIROS, BARBARA V.G. de; BERBEL, LARISSA O.; BUGARIN, ALINE F.S.; DONATUS, UYIME; COSTA, ISOLDA
    Aluminum alloys of the 2XXX and 7XXX series are among the most used materials in the aerospace industry. These alloys have good mechanical, specific strength and corrosion resistance, and for the 2XXX series, further reduction in density can be achieved by lithium addition. So, in this case, it can reduce the weight of the aeroplane and fuel usage leading to the minimization of CO 2 emissions and cost savings. Aluminum alloys have poor weldability, and to use these alloys for aeroplane structures, joining is unavoidable. To make this, the industry uses rivets to join these alloys. But rivets increase the mass of aeroplanes, and to minimise this, a non-fusion (unconventional) welding technique capable of welding aluminium alloys easily was developed. This new technique is friction stir welding, which exposes the aluminum alloys to thermomechanical effects, changing the microstructure of the alloys, and resulting in different regions with different metallurgical and mechanical properties. An example of the regions is the thermomechanically affected region which experiences both plastic deformation and high temperature but without recrystallization. There is also the stir zone which is the region of recrystallized grains, the heat affected zone and the base metal (that is not affected by the welding process). The goals of this work are to analyze the corrosion resistance of the friction stir weldment of dissimilar AA2050-T84 and AA7050-T7451 alloys using electrochemical tests, characterizing the different regions of the weldment, and establishing the most susceptible region to corrosion using a sodium chloride solution.
  • Resumo IPEN-doc 25341
    Estudo da corrosão do alumínio AA 3003 em meio de biodiesel, diesel, etanol e gasolina
    2018 - SOARES, M.; BERBEL, L.O.; BANCZEK, E.P.; FURSTENBERGER, C.B.; VIEIRA, C.; OLISZESKI, D.C.S.
    Os biocombustíveis são provenientes de fontes renováveis e cada vez mais são inseridos na matriz energética mundial, por isso é de extrema importância conhecer suas propriedades. O contato dos combustíveis com os diversos materiais metálicos constituintes dos veículos torna estes susceptíveis à corrosão. O alumínio é um metal muito utilizado em componentes automotivos pois possui características interessantes de resistência à corrosão, o metal reage com o oxigênio atmosférico sem que ocorra uma degradação de sua superfície, ao invés disso, forma-se uma camada de óxido o qual o protege contra a corrosão. A norma ABNT 14359 estabelece método de determinação da corrosão em combustíveis, porém, é exclusiva ao cobre e combustíveis fósseis, e, a corrosão é avaliada de maneira qualitativa, pela comparação visual com padrões, o que pode acarretar em incertezas de resultados. Os combustíveis em geral apresentam instabilidade, por isso é difícil a determinação da corrosão somente por meio de técnicas eletroquímicas, é necessária uma metodologia indireta a qual baseia-se na imersão do metal no combustível de estudo e posterior imersão em um eletrólito forte. Neste contexto, este trabalho teve como objetivo investigar a corrosão da liga de alumínio AA 3003 em meio de biodiesel, diesel, etanol e gasolina. A metodologia utilizada consistiu na imersão do material metálico nos combustíveis durante tempo determinado para posterior análise através ensaios de perda de massa para a determinação da variação de massa antes e após imersão nos combustíveis, análise superficial por microscopia eletrônica de varredura (MEV), e análise eletroquímica por espectroscopia de impedância eletroquímica (EIE) e polarização potenciodinâmica anódica (PPA). Os resultados de perda de massa demonstraram que valores muito baixos de perda de massa foram obtidos para todos os combustíveis, sugerindo que o alumínio, quando imerso nos combustíveis, não sofre um processo corrosivo acentuado. A partir dos resultados eletroquímicos observou-se que o metal se mostrou mais protegido contra corrosão quando imerso nos combustíveis do que quando sem a imersão, particularmente o diesel, se mostrou como combustível mais compatível com o alumínio, seguindo pelo biodiesel, etanol e pela gasolina que se mostrou mais susceptível à corrosão principalmente devido ao enxofre em sua composição. A análise da superfície metálica indicou que houve alteração na morfologia da superfície tanto após a imersão quanto após polarização anódica, a qual pode ser atribuída ao processo corrosivo do metal para formação de um óxido que promove, posteriormente, a passivação da superfície. Os resultados indicaram que alumínio AA 3003 é material metálico adequado para utilização na confecção de componentes veiculares que ficarão em contato com biodiesel, diesel, etanol ou gasolina, pois em nenhum caso ocorreu um processo de corrosão acentuado.
  • Resumo IPEN-doc 25340
    Estudo da resistência à corrosão das ligas AA2050-T84 e AA7050-T7451 soldadas por FSW
    2018 - VIVEIROS, B.V.G. de; ALENCAR, M.C.; BERBEL, L.O.; DONATUS, U.; COSTA, I.
    As ligas de alumínio da série 2XXX e 7XXX são muito utilizadas comercialmente em indústrias aeronáuticas pela presença de boas características como resistência à corrosão, resistência mecânica e baixa densidade. Porém, quando soldadas, suas microestruturas sofrem mudanças, o que altera suas propriedades. Neste estudo, as ligas 2XXX e 7XXX foram soldadas pelo método de fricção e mistura, também conhecido como “friction stir welding” (FSW), que aquece e quebra os grãos pela tensão aplicada resultando na soldagem no estado sólido das duas ligas. Neste estudo a resistência à corrosão das ligas AA2050-T84 e AA7050-T7451 soldadas por FSW foi investigada pela técnica “Scanning Vibrating Electrode Technique” (SVET), e por “Scanning Ion - Electrode Technique” (SIET), em que foi realizada a medição de pH localizado. O eletrólito usado neste estudo foi composto por 5 mM de NaCl sendo que a região analisada da solda foi a secção transversal. As zonas afetadas pelo processo FSW são apresentadas e caracterizadas a partir do tamanho de grãos existentes, como metal base (MB), zona termicamente afetada (ZTA), zona termomecanicamente afetada (ZTMA), zona de transição da zona termomecanicamente afetada das ligas (ZTMA trans) e a zona de mistura (ZM), que é a área de recristalização dos grãos. Foram também realizados ensaios de potencial de circuito aberto (OCP) e impedância eletroquímica (EIS) nas mesmas regiões observadas e ensaiadas dos ensaios anteriores, também com solução de 5 mM de NaCl. Os resultados mostraram que nas primeiras horas de ensaio, a área mais suscetível ao ataque foi a zona de transição das ligas (ZTMA trans), mas após 24 h de ensaio, a zona mais suscetível foi a ZTMA da liga 7050-T7451. Esses resultados foram correlacionados com a microestrutura das diferentes zonas.
  • Resumo IPEN-doc 25312
    Estudo da corrosão do aço inoxidável ferrítico AISI 444 para aplicação como implantes temporários
    2018 - SILVA, C.A.J.; BERBEL, L.O.; COSTA, I.; SAIKI, M.
    A indústria de biomateriais cresce muito devido principalmente ao envelhecimento da população pelo aumento da expectativa de vida. As aplicações de biomateriais como implantes dentários e ortopédicos portanto precisam ser caracterizadas quanto às suas propriedades físico-químicas em condições que simulem o contato com fluidos do corpo humano. Este contato pode resultar em corrosão dos implantes com a liberação de íons no organismo os quais podem ser prejudiciais à saúde humana. Em biomateriais metálicos, a resistência à corrosão se deve ao filme de óxido formado em contato com oxigênio do ar que protege o substrato metálico. Todavia, esses filmes podem ser atacados em meios agressivos, principalmente em presença de íons cloreto. Um dos aços que tem sido considerada para uso como parte de implante dentário, no caso removível, é o aço inoxidável ferrítico. Estes, apesar de serem ferromagnéticos, podem ser usados para maior fixação do implante utilizando conectores magnéticos. Neste trabalho, a resistência à corrosão por pites e em frestas do aço inoxidável ferrítico AISI 444 foi estudada em meios contendo cloreto, sob condição de aeração natural ou desaeração com nitrogênio, esta última para simular a condição de regiões oclusas ou de difícil acesso de oxigênio. Nestas condições, dois mecanismos de corrosão podem ocorrer; o de corrosão por pites, que é iniciado pela presença de micropilhas galvânicas entre os precipitados e a matriz da liga, e o de corrosão em frestas, cujo mecanismo de propagação é o de pilhas de aeração diferencial. Foi constatado que tanto em meios com concentrações variadas de cloreto menores potenciais de quebra do filme passivo foram observadas em condições de desaeração, ou típicas de frestas.
  • Resumo IPEN-doc 25306
    Efeito do pH do meio na resistência a corrosão de implantes fabricados com liga Ti-6Al-4V (grau V)
    2018 - BERBEL, L.O.; SILVA, C.A.J. da; BANCZEK, E.P.; KOTSAKIS, G.; COSTA, I.
    O titânio e suas ligas são amplamente utilizadas na odontologia, principalmente na manufatura de implantes dentários, devido sua biocompatibilidade e resistência à corrosão. A resistência a corrosão ocorre por meio da formação do filme de TiO2 em contato com oxigênio, esta camada é aderente e estável na superfície e atua como barreira protetora entre o substrato e o meio corrosivo. Todavia, em casos onde percebe-se inflamação na região do implante sendo necessário sua exposição para limpeza da superfície do implante, é possível observar produtos de corrosão ao redor da região afetada. Desta maneira, é necessário que se realizem estudos que simulem a região na qual o implante está inserido para melhor compreensão dos processos de corrosão de implantes dentários. Um dos fatores que devem ser levados em consideração é a alteração do pH na região bucal em consequência de processos inflamatórios ao redor dos implantes em pacientes com peri-implantite. A presença de bactérias em regiões infeccionadas resultam na fermentação de carboidratos os quais produzem ácido lático diminuindo o pH do meio para valores abaixo de 4,5. O objetivo deste estudo é simular o pH típico de condições inflamatórias in vitro para avaliação da influência deste fator no aumento da susceptibilidade à corrosão da liga Ti-6Al-4V (grau V) em solução tampão de fosfato (PBS). Foram adotadas soluções PBS com pHs ajustados para 3, 4,5 ou 7, com adição de albumina (para simular proteínas típicas da solução fisiológica) e peróxido de hidrogênio (para simular condições inflamatórias), os ensaios foram realizados em meios aerados e deaerados, para simular o difícil acesso ao oxigênio a áreas oclusas da liga exposta ao meio. As superfícies ensaiadas foram caracterizadas por microscopia eletrônica de varredura (MEV) e espectroscopia de energia dispersiva (EDS). A influência do pH na resistência à corrosão dos implantes foi investigada por medidas de potencial de circuito aberto (OCP), espectroscopia de impedância eletroquímica (EIS) e polarização potenciodinâmica anódica. Os ensaios eletroquímicos mostraram que em meio ácido a liga é susceptível ao ataque de corrosão, sendo que, esta suscetibilidade aumenta em presença de albumina, principalmente em condição desaeradas.