REJANE MARIA PEREIRA DA SILVA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • Artigo IPEN-doc 29075
    Surface finishing effects on the corrosion behavior and electrochemical activity of 2098-T351 aluminum alloy investigated using scanning microelectrochemical techniques
    2022 - SILVA, REJANE M.P. da; MILAGRE, MARIANA X.; IZQUIERDO, JAVIER; BETANCOR-ABREU, ABENCHARA M.; OLIVEIRA, LEANDRO A. de; ARAUJO, JOAO V. de S.; ANTUNES, RENATO A.; SOUTO, RICARDO M.; COSTA, ISOLDA
    The effects of surface finishing on the corrosion behavior and electrochemical activity of AA2098-T351 (Al–Cu–Li alloy) were investigated on the basis of the correlation between surface chemistry, microstructure and electrochemical activity. The alloy was evaluated in the as-received and polished conditions. The morphology of the two types of surfaces was investigated using confocal laser scanning microscopy (CLSM), optical microscopy and optical 3D profilometry. The surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). Scanning microelectrochemical techniques (namely, localized electrochemical impedance spectroscopy (LEIS), the scanning vibrating electrode technique (SVET) and scanning electrochemical microscopy (SECM) in potentiometric mode) were used to examine the electrochemical activity of the surfaces. The results showed that on the as-received surface, the near surface deformed layer (NSDL), which is composed of Mg-rich bands, influenced the corrosion activity of the alloy. Higher electrochemical activity and greater susceptibility to severe localized corrosion were related to the polished surface condition compared to the as-received one.
  • Artigo IPEN-doc 27573
    Surface chemistry, film morphology, local electrochemical behavior and cytotoxic response of anodized AZ31B magnesium alloy
    2020 - OLIVEIRA, LEANDRO A. de; SILVA, REJANE M.P. da; RODAS, ANDREA C.D.; SOUTO, RICARDO M.; ANTUNES, RENATO A.
    This work investigates the effect of current density on the surface chemistry, film morphology, cytotoxic response, global and local electrochemical behaviors of AZ31B alloy anodized in 1.0 M NaOH + 0.5 M Na2SiO3 solution. Three different current densities, namely 5, 10 and 20 mA cm−2 were tested. The surface morphology and thickness of the anodized layers were examined by scanning electron microscopy. The surface chemical states were assessed by X-ray photoelectron spectroscopy. The corrosion resistance was evaluated in phosphate-buffered saline (PBS) based on electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The use of scanning probe techniques with physicochemical resolution, the scanning electrochemical microscopy (SECM) and the scanning Kelvin probe (SKP), allowed the best corrosion behavior to be assigned to the sample anodized using a current density of 20 mA cm−2. Altogether, these methods allowed to establish that the anodizing current density imposed to the magnesium alloy had a major effect on the morphology and composition of the surface layers, and produced changes in their electrochemical behavior. In vitro cytotoxicity tests using the MTS assay demonstrated that the good biocompatibility of the AZ31B magnesium alloy was not damaged by the surface layers formed during the anodization treatment.
  • Artigo IPEN-doc 26644
    Macro and microgalvanic interactions in friction stir weldment of AA2198-T851 alloy
    2019 - DONATUS, UYIME; SILVA, REJANE M.P. da; ARAUJO, JOAO V. de S.; MILAGRE, MARIANA X.; ABREU, CAIO P. de; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    The galvanic interactions within and between the friction stir weld zones of the AA2198-T851alloy have been investigated using electrochemical and microscopy techniques. The parentmaterial (PM) was the most anodic region and exhibited pronounced severe localized corro-sion (SLC) both when coupled and isolated. The stir zone was the most resistant to corrosionand exhibited no SLC when coupled, but exhibited SLC when isolated. Profiles associatedwith dissolved oxygen consumption and hydrogen generation currents across the weldmentwere inversely related because the anodic (PM) region produced higher hydrogen bubblesand, interestingly, consumed more dissolved oxygen compared with the other regions.
  • Artigo IPEN-doc 26643
    Exfoliation corrosion susceptibility in the zones of friction stir welded AA2098-T351
    2019 - MILAGRE, MARIANA X.; DONATUS, UYIME; MACHADO, CARULINE S.C.; ARAUJO, JOAO V.S.; FERREIRA, RAPHAEL O.; SILVA, REJANE M.P.; ANTUNES, RENATO A.; COSTA, ISOLDA
    In the present study, the exfoliation susceptibility of the weld zones in friction stir weldedAA2098-T351 was compared with that of the base metal (BM) according to ASTM G34 stan-dard practice. Friction stir welding (FSW) had a significant effect on the microstructure of theAl alloy tested and the susceptibility to exfoliation was strongly affected by the microstruc-ture. Different features of corrosion attack and exfoliation susceptibility were observed whenthe zones affected by FSW were tested isolated or coupled. Also, the near-surface deformedlayer had an important effect on the Al alloy susceptibility to exfoliation. These are themain findings of this work. The corrosion features were correlated with the microstructuralmodifications related to the welding process and with the electrochemical response. TheT1 phase morphology, distribution and size were critical for exfoliation susceptibility. Thestir zone (SZ) was the zone most resistant to exfoliation. However, resistance to exfoliationvaried with the temperatures reached in the heat affected zones (HAZs). The HAZ exposedto the lowest temperatures during welding, HAZ (LT), was the most susceptible to exfoli-ation, whereas the HAZ exposed to the highest temperatures, HAZ (HT), presented highresistance to exfoliation, similarly to the SZ. The ASTM-G34 practice was an effective anduseful method in identifying the different exfoliation resistances of the BM and the vari-ous zones affected by FSW. The results of this practice were supported by electrochemicalimpedance spectroscopy (EIS) tests.