REJANE MARIA PEREIRA DA SILVA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 24
  • Artigo IPEN-doc 29721
    Welding and galvanic coupling effects on the electrochemical activity of dissimilar AA2050 and AA7050 aluminum alloys welded by Friction Stir Welding (FSW)
    2023 - VIVEIROS, BARBARA V.G. de; SILVA, REJANE MARIA P. da; DONATUS, UYIME; COSTA, ISOLDA
    In this work, the effects of friction stir welding (FSW) on the microstructure and electrochemical activities of dissimilar AA2050 and AA7050 aluminum alloys have been investigated. Local electrochemical tests supported by surface analytical characterization were used to study the local electrochemical activities developed along the weld zones of the dissimilar alloys. The investigation was carried out on the cross-section of the welded Al alloys. The results showed that the friction stir welding (FSW) of the dissimilar alloys affected the microstructure and the electrochemical behavior of the different regions (HAZ, TMAZ, SZ) formed by the welding process. Scanning vibrating electrode technique (SVET) and micropotentiometry by using an ion-selective microelectrode showed that TMAZ was the zone with the highest electrochemical activity. This zone corresponded to the transition region between the two welded alloys. The high electrochemical activity observed in this region was associated with the effect of welding on the microstructure and, also, with the galvanic coupling between the two alloys, where the alloy AA7050 acted as an anode and the AA2050 as a cathode. Preferential corrosion attack on the AA7050 alloy was also evident.
  • Artigo IPEN-doc 29682
    Investigação da atividade eletroquímica de liga Al-Cu-Li após processo de soldagem por fricção e mistura
    2023 - SILVA, REJANE M.P. da; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; RAMIREZ, OSCAR M.P.; MACHADO, CARULINE de S.C.; ANTUNES, RENATO A.; COSTA, ISOLDA
    In this work, the local electrochemical activity of the zones coupled by Friction Stir Welding (FSW) of an Al-Cu-Li alloy was studied and the results were correlated to the microstructural characteristics of each zone. Electrochemical studies were carried out in the zones affected by welding using cyclic voltammetry (CV) and scanning electrochemical techniques (namely, SECM - Scanning Electrochemical Microscopy and LEIS – Local electrochemical impedance spectroscopy). The results showed that the welding joint (WJ) is predominantly cathodic relatively to the heat affected zones (HAZ). The HAZ was always anodic and showed the highest electrochemical activities among the tested ones. The high electrochemical activity of the HAZ was associated with the effect of galvanic coupling between the cathodic region (WJ) and the anodic region (HAZ). In addition, the advancing side (AS) presented increased electrochemical activity compared to the retreating one (RS).
  • Artigo IPEN-doc 29527
    Naphthenic corrosion using electrochemical and analytical techniques
    2022 - SIMOES, A.M.P.; SILVA, R.M.P.; SUFFREDINI, H.B.; SANTOS, L.F.; BASTOS, I.N.
    Naphthenic acid corrosion of steel was studied in a stagnant, biphasic oil/aqueous phase system, by means of electrochemical measurements and surface analysis. Corrosion was restricted to the region of the aqueous phase, as crater-shaped pits that eventually coalesced, generating a nearly uniform attack in the vicinity of the oil phase. In-situ electrochemical impedance spectroscopy (EIS) reveals the processes occurring at the aqueous phase, which nevertheless increase with the fraction of oil phase and with degree of acidity of the oil.
  • Artigo IPEN-doc 29075
    Surface finishing effects on the corrosion behavior and electrochemical activity of 2098-T351 aluminum alloy investigated using scanning microelectrochemical techniques
    2022 - SILVA, REJANE M.P. da; MILAGRE, MARIANA X.; IZQUIERDO, JAVIER; BETANCOR-ABREU, ABENCHARA M.; OLIVEIRA, LEANDRO A. de; ARAUJO, JOAO V. de S.; ANTUNES, RENATO A.; SOUTO, RICARDO M.; COSTA, ISOLDA
    The effects of surface finishing on the corrosion behavior and electrochemical activity of AA2098-T351 (Al–Cu–Li alloy) were investigated on the basis of the correlation between surface chemistry, microstructure and electrochemical activity. The alloy was evaluated in the as-received and polished conditions. The morphology of the two types of surfaces was investigated using confocal laser scanning microscopy (CLSM), optical microscopy and optical 3D profilometry. The surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). Scanning microelectrochemical techniques (namely, localized electrochemical impedance spectroscopy (LEIS), the scanning vibrating electrode technique (SVET) and scanning electrochemical microscopy (SECM) in potentiometric mode) were used to examine the electrochemical activity of the surfaces. The results showed that on the as-received surface, the near surface deformed layer (NSDL), which is composed of Mg-rich bands, influenced the corrosion activity of the alloy. Higher electrochemical activity and greater susceptibility to severe localized corrosion were related to the polished surface condition compared to the as-received one.
  • Artigo IPEN-doc 29046
    Electrochemical characterization of alloy segregation in the near-surface deformed layer of welded zones of an Al-Cu-Li alloy using scanning electrochemical microscopy
    2022 - SILVA, REJANE M.P. da; IZQUIERDO, JAVIER; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; ANTUNES, RENATO A.; SOUTO, RICARDO M.; COSTA, ISOLDA
    The development of heterogeneous electrochemical activity in the welded zones of aluminum alloy 2098-T351 by friction stir welding (FSW) associated with the formation of a near-surface deformed layer (NSDL) upon exposure to an aqueous chloride-containing solution was characterized using scanning electrochemical microscopy (SECM) in potentiometric operation. A solid-contact Mg2+ ion-selective microelectrode allowed in situ monitoring of the corrosion reactions sites for magnesium dissolution from different zones of the FSW weld upon exposure to a chloride-containing aqueous environment. In this way, localized corrosion reactions developing in the galvanically coupled joint/heat affected zones (WJ/HAZ) of the weld were detected and imaged with spatial resolution. The most active domains for local Mg2+ concentrations were associated with the HAZ of the retreating side (RS), and these corresponded to Mg oxidation from the Mg-enriched oxide bands in NSDL.
  • Artigo IPEN-doc 28933
    Corrosion behaviour of the 2098-T351 Al–Cu–Li alloy after different surface treatments
    2022 - BARBOZA, WANESSA das G.; MILAGRE, MARIANA X.; DONATUS, UYIME; MACHADO, CARULINE de S.C.; RAMIREZ, OSCAR M.P.; ARAUJO, JOAO V. de S.; SILVA, REJANE M.P. da; COSTA, ISOLDA
    The effect of different surface treatments on the corrosion resistance of the AA2098 Al–Cu–Li alloy has been investigated. Surface characterization was performed using 3D optical profilometry, energy dispersive X-ray spectroscopy and scanning electron microscopy. The corrosion resistance of the 2098 alloy after the surface treatments was investigated in 0.1 mol L−1 NaCl solution by electrochemical techniques and microscopy. Corrosion results showed that the untreated and the chemically etched surfaces were more active than the mechanically abraded and mechanically polished surfaces owing to differences in the nature of the native oxides formed after the surface treatments. Corrosion rate and mode were also affected by how close the exposed surface was to the mid-thickness region of the AA2098-T351 plate relative to the actual top surface (before polishing). This is associated with the variation in the volume fraction and distribution of the T1 phase as the mid-thickness region of the AA2098-T351 plate is approached.
  • Artigo IPEN-doc 28885
    Compreendendo os mecanismos de corrosão de ligas de Al-Cu-Li
    2022 - ARAUJO, JOAO V. de S.; SILVA, REJANE M.P. da; VIVEIROS, BARBARA V.; MILAGRE, MARIANA X.; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    In this study, the corrosion mechanism of an Al-Cu-Li alloy manufactured by two different treatment routes (T3 and T851) was evaluated by immersion and electrochemical tests in solutions containing chloride ions (Cl-). For both alloys, the formation of cavities on the surface was associated with micrometer-sized intermetallics (IM’s), however, in addition to this attack, the alloy submitted to T851 treatment also presented an attack called severe localized corrosion (SLC), caused by the preferential attack to the nanometric T1 (Al2CuLi) phase. The electrochemical concepts involved in these two types of attacks were discussed. During the IM’s corrosive process, whereas the O2 reduction occurred over the IM’s, the Al dissolution is favored around the particle, forming trenching and cavities (with 2 and 6 mm of depth). On the other hand, the mechanism associated with the SLC is related to the formation of a differential aeration cell followed by the evolution of H2, with greater depth of attack penetration (8 and 35 mm). Additionally, by the use of the Scanning Vibrating Electrode Technique (SVET), it was concluded that the higher anodic currents observed for the T851 temper were related to the relation between the anodic area (Aa) and the cathodic area (Ac).
  • Artigo IPEN-doc 28826
    Development of an Al3+ ion-selective microelectrode for the potentiometric microelectrochemical monitoring of corrosion sites on 2098-T351 aluminum alloy surfaces
    2022 - SILVA, REJANE M.P. da; IZQUIERDO, JAVIER; MILAGRE, MARIANA X.; ANTUNES, RENATO A.; SOUTO, RICARDO M.; COSTA, ISOLDA
    A novel potentiometric Al3+−ion selective microelectrode (ISME), with internal solid contact, based on the use of a neutral carrier morin as ionophore is reported. The ability of the ISME to image local ion concentration distributions was tested on aluminum alloy surfaces freely corroding in an aqueous solution containing chloride ions. The microelectrode was then used as the sensing tip for scanning electrochemical microscopy (SECM) in potentiometric operation to monitor the reactive sites associated with the dissolution of aluminum that developed in the 2098−T351 Al−Cu−Li alloy as a result of welding by the Friction Stir Welding (FSW) process. The ISME detected differences in the local concentrations of Al3+ species arising from the 2098−T351 Al−Cu−Li alloy (base material) and from the coupled weld joint/heat affected zones (WJ/HAZ) of the alloy produced by the FSW process. More active domains for Al3+ dissolution were found in the HAZ regions coupled to WJ, more specially in the HAZ of the advancing side (AS). These results demonstrate that the Al3+−ISME presented in this work can be used to monitor corrosion sites on aluminum alloys surfaces with combined chemical and spatial resolution.
  • Artigo IPEN-doc 28663
    Naphthenic acid corrosion of API 5L X70 steel in aqueous/oil environment using electrochemical surface-resolved and analytical techniques
    2022 - SILVA, REJANE M.P.; SUFFREDINI, HUGO B.; BASTOS, IVAN N.; SANTOS, LUIS F.; SIMOES, ALDA M.P.
    Naphthenic acid corrosion of steel is studied in crude oil/aqueous phase system at ambient temperature, using a biphasic stagnant liquid without emulsification, by means of electrochemical measurements and surface analysis. The in-situ electrochemical impedance is assigned to the processes occurring at the aqueous phase. Corrosion occurred only in the region of the aqueous phase, as crater-shaped pits that eventually coalesced, generating a nearly uniform attack in the vicinity of the oil phase. The impedance values, normalized to the aqueous region only, reveal corrosion rate increasing with the ratio of crude oil/water. Despite the localized character of the anodic oxidation, the iron naphthenate corrosion products became partitioned between the two phases. Surface-resolved electrochemical techniques in aqueous solution revealed enhanced activity of the regions pre-exposed to oil.
  • Artigo IPEN-doc 28531
    Influence of chloride ions concentration on the development of severe localised corrosion and its effects on the electrochemical response of the 2198-T8 alloy
    2021 - MACHADO, CARULINE de S.C.; SILVA, REJANE M.P. da; ARAUJO, JOAO V. de S.; MILAGRE, MARIANA X.; DONATUS, UYIME; VIVEIROS, BARBARA V.G. de; KLUMPP, RAFAEL E.; COSTA, ISOLDA
    The development of severe localised corrosion (SLC) on the 2198-T8 alloy was investigated in solutions of various NaCl concentrations (0.001, 0.005 and 0.01 mol L−1). Immersion tests, optical profilometry, conventional and local electrochemical analyses were performed to evaluate the corrosion behaviour of the alloy. Immersion tests showed that the alloy is susceptible to SLC in all conditions, although the pits sizes were dependent on the solution concentration. The largest anodic areas, corresponding to SLC sites, were observed for the sample immersed in 0.001 mol L−1 NaCl, whereas pits with similar sizes were observed for the samples immersed in solutions with 0.005 and 0.01 mol L−1 of NaCl. Moreover, the maximum depth of attack was observed for the sample immersed in 0.001 mol L−1 NaCl. These results were in agreement with the scanning ionselective electrode technique (SIET) maps which showed stronger acidification on the sample exposed to 0.001 mol L−1 NaCl solution.