MARINA FALLONE KOSKINAS

Resumo

Graduate at Física from Pontifícia Universidade Católica de São Paulo (1972), master's at Nuclear Engineering from Universidade de São Paulo (1978) and ph.d. at Nuclear Engineering from Universidade de São Paulo (1988). Has experience in Nuclear Engineering, focusing on Instrumentation for Measure and Control of Radiation, acting on the following subjects: radionuclide metrology, standardizations in coincidence system, determination of nuclear parameters, gamma emission probability per decay. (Text obtained from the Currículo Lattes on November 17th 2021)


Possui graduação em Física pela Pontifícia Universidade Católica de São Paulo (1972), mestrado em Tecnologia Nuclear pela Universidade de São Paulo (1978) e doutorado em Tecnologia Nuclear pela Universidade de São Paulo (1988). Atualmente é pesquisador titular do Instituto de Pesquisas Energéticas e Nucleares. Tem experiência na área de Engenharia Nuclear, com ênfase em Instrumentação para Medida e Controle de Radiação, atuando principalmente nos seguintes temas: metrologia de radionuclídeos, padronização em sistemas de coincidências, determinação de parâmetros nucleares como probabilidade de emissão gama por decaimento. (Texto extraído do Currículo Lattes em 17 nov. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 1 de 1
  • Artigo IPEN-doc 28692
    Experimental determination of k0 and Q0 values for 121Sb, 123Sb and 130Ba targets applying covariance analysis
    2022 - BARROS, L.F.; DIAS, M.S.; KOSKINAS, M.F.
    This work consists of an experimental determination of k0 and Q0 for 121Sb, 123Sb and 130Ba targets. Covariance analysis has been introduced to supply not only the overall uncertainties in these parameters but also their correlations. The irradiations were performed near the core of the IEA-R1 4.5 MW swimming-pool nuclear research reactor of the Nuclear and Energy Research Institute (IPEN-CNEN/SP), in São Paulo, Brazil. The epithermal neutron flux shape parameter, alpha, at the irradiation position is very close to zero, which favors to obtain Q0 values more accurately. Two irradiations were carried out in sequence, using two sets of samples: the first with bare samples and the second inside a Cd cover. The activity measurements were carried out in a previously calibrated HPGe gamma-ray spectrometer. The measurements were corrected for: saturation, decay time, cascade summing, geometry, self-attenuation, measuring time and mass. Standard sources of 152Eu, 133Ba, 60Co and 137Cs traceable to a 4πβ−γ primary system were used to obtain the HPGe gamma-ray peak efficiency as a function of the energy. The experimental efficiency curve was performed by a fourth-degree polynomial fit, in the energy range of the standard sources, 121–1408 keV, it contains all correlations between points. For energies above 1408 keV, the efficiencies were obtained by the Monte Carlo Method. The covariance matrix methodology was applied to all uncertainties involved. The final values for k0 and Q0 were compared with the literature.