DAIANE CRISTINI BARBOSA DE SOUZA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • Artigo IPEN-doc 27743
    Gamma spectrometry of iodine-125 produced in IEA-R1 nuclear reactor, using HPGe detector and fixation into epoxy matrix disc
    2021 - COSTA, OSVALDO L. da; SOUZA, DAIANE C.B. de; CASTANHO, FABIO G.; FEHER, ANSELMO; MOURA, JOÃO A.; SOUZA, CARLA D.; OLIVEIRA, HENRIQUE B.; MADUAR, MARCELO F.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
    Few places in the world produce iodine-125. In Brazil, the first production was achieved by using the IEA-R1 nuclear reactor located at Nuclear and Energy Research Institute – IPEN. To verify the quality of iodine-125 produced, and the amount of contaminants such as iodine-126, cesium-134 and caesium-137 among others, iodine-125 samples were immobilized into epoxy matrix disc, with the same geometry of a barium-133 reference radioactive source, used to calibrate an HPGe detector. The HPGe detector has a thin carbon composite window, which allows measure the iodine-125 photopeaks, between 27.1 and 35.4 keV. The method employed here was successful in producing and measurement of iodine-125.
  • Resumo IPEN-doc 26913
    New core configuration for producing Iodine 125 seeds
    2017 - RODRIGUES, B.T.; ROSTELATO, M.C.M.; SOUZA, C.D. de; ZEITUNI, C.; MOURA, E.S. de; SOUZA, D.B. de; TOZETTI, C.; RODRIGUES, B.
    Purpose: Cancer is one of the most complex public health problems. Prostate cancer is the second most common among men. In prostate brachytherapy use Iodine-125, which is fixated on a silver substrate, then inserted and sealed in a titanium capsule. This work proposes a new source configuration using epoxy resin substrate. Methods: Comparation and analysis methods were used to define the methodology for combining iodine-125 in polymers. The parameters were immersion time, reaction type, concentration of the adsorption solution, specific activity of the radioactive solution, need for carrier and chemical form of radioactive iodine. Results: The methodology developed with an epoxy resin was very good. The final radioactive intake on the resin was higher than 80%. The immobilization of the radioactive solution occurred in the matrix, without any loss or deposition of undesirable materials on its surface, as evidenced by the smear test. The material maintains its integrity when autoclaved at 140 °C. The curing process of the resin was 40 minutes. With the value of the initial activity of the Iodine solution by mass (774.2 lCi/g), it was possible to calculate the immobilization efficiency Average of 680 lCi/g. The immersion test in distilled water at room temperature did not exceed the limit allowed by ISO 9978, which is 5 nCi (185 Bq), proof of no leakage. In a computational simulation by the Monte Carlo Method, PENELOPE, the simulations were consistent with the values adopted by the literature for the GE Healthcare model 6711, which shows the value of the dose rate constant as 0, 965 cGy.U-1.h-1. Conclusion: The effective method for combining iodine-125 in epoxy resin was determinated. The major advantage was the high efficiency percentage fixation, around 82,1 3,2%, and the simplicity and safety of the process.
  • Resumo IPEN-doc 26911
    Measurement of Iodine-125 radioactive solid waste derived from sources production laboratory for brachytherapy
    2017 - SOUZA, D.B. de; ROSTELATO, M.C.M.; VICENTE, R.; ZEITUNI, C.; SOUZA, C.D. de; RODRIGUES, B.T.; MARQUES, J. de O.; CARVALHO, V.; BARBOSA, N.
    Purpose: This study aims to present a solid waste management plan for the laboratory of radioactive sources production (LPFR), iodine-125 brachytherapy seeds, located at the Energy and Nuclear Research Institute (IPEN). After the implementation, it is expected to meet a demand of 8000 seeds per month. Methods: Waste from the production of Iodine-125 sources is classified as “Very Low Level Waste Disposal” (T1/2 ≤ 100 days) in the IAEA regulations. Despite that, they have levels of activity above the limits established in standard (CNEN 8.01) needing adequate management in order to guarantee the safety of the installation, operators and environment. The solid waste is generated in Glove box 1, were the fixation reaction (iodine-125 – core) takes place. The wastes from this production are absorbent papers and filters used in surface and air decontamination processes; glass vials, syringes and needles, used in the fixation reaction. Measures of mass, volume and values of activities generated over 5 years of production were performed for each glove box by estimating different scenarios throughout production (supplier switching, variation in activity by radioactive source, etc.). The concentration of activity was also determined in order to meet the criteria established in the standard for safe release of the waste. Results: The final volumes and activities calculated indicated that the laboratory has enough space for temporary storage until the release to the environment (thus not requiring treatment, transport, and another place for management). The data collected proved that a secure management system for radioactive waste within the facility is possible. Conclusion: The management proposed by this work was able to safely contemplate all stages of waste management. This data is indispensable for the construction and licensing of the laboratory.