DAIANE CRISTINI BARBOSA DE SOUZA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 22
  • Artigo IPEN-doc 27743
    Gamma spectrometry of iodine-125 produced in IEA-R1 nuclear reactor, using HPGe detector and fixation into epoxy matrix disc
    2021 - COSTA, OSVALDO L. da; SOUZA, DAIANE C.B. de; CASTANHO, FABIO G.; FEHER, ANSELMO; MOURA, JOÃO A.; SOUZA, CARLA D.; OLIVEIRA, HENRIQUE B.; MADUAR, MARCELO F.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
    Few places in the world produce iodine-125. In Brazil, the first production was achieved by using the IEA-R1 nuclear reactor located at Nuclear and Energy Research Institute – IPEN. To verify the quality of iodine-125 produced, and the amount of contaminants such as iodine-126, cesium-134 and caesium-137 among others, iodine-125 samples were immobilized into epoxy matrix disc, with the same geometry of a barium-133 reference radioactive source, used to calibrate an HPGe detector. The HPGe detector has a thin carbon composite window, which allows measure the iodine-125 photopeaks, between 27.1 and 35.4 keV. The method employed here was successful in producing and measurement of iodine-125.
  • Resumo IPEN-doc 27037
    Waste management protocols for Iridium-192 sources production laboratory used in cancer treatment
    2016 - ROSTELATO, MARIA E.C.M.; SOUZA, CARLA D. de; SOUZA, DAIANE C.B. de; ZEITUNI, CARLOS A.; TIEZZI, RODRIGO; COSTA, OSVALDO L. da; RODRIGUES, BRUNA T.; MOURA, JOÃO A.; FEHER, ANSELMO; SORGATTI, ANDERSON; MOURA, EDUARDO S. de; MARQUES, JOSE R. de O.; SANTOS, RAFAEL M. dos; KARAM JUNIOR, DIB
    Introduction: Brachytherapy is a form of treatment that uses radioactive seeds placed in contact or inside the region to be treated, maximizing the radiation dose inside the targeted areas. Iridium-192 is being used in brachytherapy since 1955. It presents emission energy in the “therapy region” (370keV) and is easily produced in a nuclear reactor (191Ir (n, γ) → 192Ir). Wires are an iridium-platinum alloy with 0.36 mm diameter and they can be cut in any needed length. They can be used in several types of cancer. The linear activity is between 1 mCi/cm (37 MBq/cm) and 4 mCi/cm (148 MBq/cm) with variations of 10% in 50 cm maximum. This activity values classified the treatment and low dose rate (0,4 à 2 Gy/h). The propose of this work is to present a waste management system in a cancer treatment radioactive sources production laboratory. Methodology and Results: The solid waste is previously characterized in the analysis phase. The contaminants are already known and they are insignificant due to their fast half- life. The iridium-192 half-life is 74.2 days, classified as very short half-life waste. The waste activity is adds to 8mCi (2.96x108 Bq) per wire. According to the CNEN-NN 6.08 standard, that presents the discharge levels, the limit is 1 kBq.kg-1 (2.7x10-5 mCi.kg-1). The radioactive waste generated during the I192 wires production has a weakly activity of 9.7 GBq.g-1. According to the standards, this activity is too high to be discarded into the environment. The waste must be managed following the ALARA principal using the R&R (retain e retard) system, that means, temporary storage and posterior discharge. Since every 4 months, maintenance is performed inside the hot cell used for production, the waste must be removed. Using the equation: 𝐴 = 𝐿 λ (1 − 𝑒−λt), the total calculated activity is 1.68 x 1016 Bq and 4.8 g mass at the end of each 4 months period. This amount is stored inside a shielding device that has 212.37 cm3 volume. The waste will take 9.8 years (calculated by 𝐴 = 𝐴0(𝑒−λt)) to decay to the discharge levels. To store 30 devices during 10 years, a space with 6,370 cm3 is necessary. The laboratory has enough space for this storage. Thus, the radioactive waste management can be performed through the R&R (retain and retard) system safely.
  • Resumo IPEN-doc 26913
    New core configuration for producing Iodine 125 seeds
    2017 - RODRIGUES, B.T.; ROSTELATO, M.C.M.; SOUZA, C.D. de; ZEITUNI, C.; MOURA, E.S. de; SOUZA, D.B. de; TOZETTI, C.; RODRIGUES, B.
    Purpose: Cancer is one of the most complex public health problems. Prostate cancer is the second most common among men. In prostate brachytherapy use Iodine-125, which is fixated on a silver substrate, then inserted and sealed in a titanium capsule. This work proposes a new source configuration using epoxy resin substrate. Methods: Comparation and analysis methods were used to define the methodology for combining iodine-125 in polymers. The parameters were immersion time, reaction type, concentration of the adsorption solution, specific activity of the radioactive solution, need for carrier and chemical form of radioactive iodine. Results: The methodology developed with an epoxy resin was very good. The final radioactive intake on the resin was higher than 80%. The immobilization of the radioactive solution occurred in the matrix, without any loss or deposition of undesirable materials on its surface, as evidenced by the smear test. The material maintains its integrity when autoclaved at 140 °C. The curing process of the resin was 40 minutes. With the value of the initial activity of the Iodine solution by mass (774.2 lCi/g), it was possible to calculate the immobilization efficiency Average of 680 lCi/g. The immersion test in distilled water at room temperature did not exceed the limit allowed by ISO 9978, which is 5 nCi (185 Bq), proof of no leakage. In a computational simulation by the Monte Carlo Method, PENELOPE, the simulations were consistent with the values adopted by the literature for the GE Healthcare model 6711, which shows the value of the dose rate constant as 0, 965 cGy.U-1.h-1. Conclusion: The effective method for combining iodine-125 in epoxy resin was determinated. The major advantage was the high efficiency percentage fixation, around 82,1 3,2%, and the simplicity and safety of the process.
  • Resumo IPEN-doc 26911
    Measurement of Iodine-125 radioactive solid waste derived from sources production laboratory for brachytherapy
    2017 - SOUZA, D.B. de; ROSTELATO, M.C.M.; VICENTE, R.; ZEITUNI, C.; SOUZA, C.D. de; RODRIGUES, B.T.; MARQUES, J. de O.; CARVALHO, V.; BARBOSA, N.
    Purpose: This study aims to present a solid waste management plan for the laboratory of radioactive sources production (LPFR), iodine-125 brachytherapy seeds, located at the Energy and Nuclear Research Institute (IPEN). After the implementation, it is expected to meet a demand of 8000 seeds per month. Methods: Waste from the production of Iodine-125 sources is classified as “Very Low Level Waste Disposal” (T1/2 ≤ 100 days) in the IAEA regulations. Despite that, they have levels of activity above the limits established in standard (CNEN 8.01) needing adequate management in order to guarantee the safety of the installation, operators and environment. The solid waste is generated in Glove box 1, were the fixation reaction (iodine-125 – core) takes place. The wastes from this production are absorbent papers and filters used in surface and air decontamination processes; glass vials, syringes and needles, used in the fixation reaction. Measures of mass, volume and values of activities generated over 5 years of production were performed for each glove box by estimating different scenarios throughout production (supplier switching, variation in activity by radioactive source, etc.). The concentration of activity was also determined in order to meet the criteria established in the standard for safe release of the waste. Results: The final volumes and activities calculated indicated that the laboratory has enough space for temporary storage until the release to the environment (thus not requiring treatment, transport, and another place for management). The data collected proved that a secure management system for radioactive waste within the facility is possible. Conclusion: The management proposed by this work was able to safely contemplate all stages of waste management. This data is indispensable for the construction and licensing of the laboratory.
  • Artigo IPEN-doc 26206
    Gamma spectrometry of iodine-125 produced in IEA-R1 nuclear reator, using HPGe detector and fixation into epoxy matrix disc
    2019 - COSTA, OSVALDO L. da; SOUZA, DAIANE C.B. de; CASTANHO, FABIO G.; FEHER, ANSELMO; MOURA, JOÃO A.; SOUZA, CARLA D. de; OLIVEIRA, HENRIQUE B. de; MADUAR, MARCELO F.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
    Few places in the world produce iodine-125. In Brazil, the first production happened in nuclear reactor IEA-R1 located at Nuclear and Energy Research Institute – IPEN. To verify the quality of iodine-125 produced, because contaminants as iodine-126, caesium-134 and caesium-137 among others, may be produced in irradiation process, iodine-125 samples were immobilized into epoxy matrix disc, with the same geometry of a barium-133 reference radioactive source, used to calibrate an HPGe detector. The HPGe detector has a thin carbon composite window, which allows measure the iodine-125 photopeaks, between 27.1 and 35.4 keV.
  • Resumo IPEN-doc 24925
    Caracterização de rejeitos radioativos sólidos na produção de sementes de iodo-125 para braquiterapia
    2017 - BARBOSA, N.K.O.; CARVALHO, V.S.; ROSTELATO, M.E.C.M.; VICENTE, R.; SOUZA, D.C.B.
    A braquiterapia é uma modalidade de radioterapia na qual uma fonte radioativa selada é colocada dentro ou próximo do órgão a ser tratado. As fontes de Iodo-125 são envidas por uma cápsula constituída de titânio. No Brasil, são importadas a um custo elevado sendo preciso cerca de 80 a 120 unidades para fazer cada tratamento. A produção destas fontes têm sido realizada, a nível de pesquisa, no Laboratório de Produção de Fontes para Radioterapia (LPFRT) localizado no Instituto de Pesquisas Energéticas e Nucleares (IPEN), com a intenção de nacionalizar a produção e diminuir os custos. As sementes são produzidas dentro de três células de produção, e rejeitos radioativos serão gerados nessas células. Desenvolver uma metodologia para caracterizar os rejeitos radioativos sólidos gerados durante a produção de sementes de Iodo-125 para tratamento de braquiterapia no LPFRT. A metodologia consistiu na realização de cálculos específicos para estimativa de volume e massa de cada rejeito sólido gerado nas células de produção. Sendo possível estimar, por semana, quanto de rejeito entrará no depósito, qual o espaço que ele ocupará e também seu peso. Para este cálculo, foi levado em consideração a geometria dos rejeitos. Além disso, foi feito cálculo de decaimento radioativo para definir o tempo que o rejeito ficará armazenado, para posterior descarte no sistema de coleta. Outro cálculo de decaimento radioativo foi feito para que se estime o valor de decaimento das atividades já armazenadas, usando o resultado da soma das atividades presentes no depósito. A taxa de entrada e saída do armazenamento foi estimado durante 1 ano, somando a atividade dos rejeitos que serão colocados semanalmente com a atividade já existente dentro do depósito. Assim, foi possível determinar o tempo necessário para armazenamento dos rejeitos em depósito intermediário, seguindo normas. Após esse processo, é possível notar que a taxa de volume, massa e radioatividade, diminui conforme maior tempo de retenção dos rejeitos por conta da dispensa dos materiais; e também, há o decaimento da radioatividade já presente no depósito. Os rejeitos radioativos sólidos serão liberados semanalmente com a taxa de radioatividade final de 9,60x105Bq. Cada lote poderá ser dispensado em lixo urbano a partir de 111 semanas de armazenamento, sem afetar o meio ambiente e a saúde de humanos e animais que porventura, entre em contato com os rejeitos sólidos.
  • Resumo IPEN-doc 24640
    Nova metodologia para fixar iodo-125 em fontes radioativas RM resina epóxi
    2017 - RODRIGUES, BRUNA T.; ROSTELATO, MARIA E.C.M.; SOUZA, CARLA D. de; TOZETTI, CINTIA A.; NOGUEIRA, BEATRIZ R.; SOUZA, DAIANE C.; ZEITUNI, CARLOS A.; MARQUES, JOSE R. de O.; SILVA, JOSE T. da
    Introdução: O câncer de próstata é o mais comum entre os homens, aproximadamente 28,6%. A escolha do tipo de tratamento para o câncer da próstata deve considerar vários fatores como: tamanho e extensão do tumor, agressividade aparente (características patológicas), idade, saúde. A braquiterapia vem sendo utilizada em estágios iniciais e intermediários da doença porque é um tratamento seguro e efetivo para câncer prostático localizado. As sementes radioativas são colocadas em contato com ou dentro do órgão a ser tratado, permitindo que a dose de radiação seja liberada apenas no tumor alvo que proteja os tecidos circundantes saudáveis. As fontes podem ter diferentes formas e tamanhos, e a utilizada para câncer de próstata geralmente tem 4,5 mm de comprimento e 0,8 mm de diâmetro. Cerca de 80 a 120 sementes podem ser usadas por paciente. O Iodo-125 é o radioisótopo mais utilizado na braquiterapia da próstata, emite raios-X de 35,49 keV em 100% dos decaimentos, com energia média de 29 keV. Objetivos: Este trabalho propõe uma alternativa às sementes que já foram desenvolvidas, a fim de reduzir o custo. Desenvolvendo uma configuração de núcleo alternativa com o objetivo de aumentar o rendimento de iodo-125 fixado na matriz epoxídica, reduzindo assim o custo total. Resultados: Após produzidas as fontes, foi realizado teste de estanqueidade, com a fonte imersa em água destilada à temperatura ambiente. O resultado não excedeu o limite permitido pela norma ISO 9978 que é de 5 nCi (185 Bq) e o teste de esfregaço não indicou atividade no papel filtro. Conclusão: A fonte foi considerada estanque, após testes padrões, sem qualquer vazamento do material radiativo, viabilizando a matriz epóxi para confecção dos núcleos. Resultando em um método seguro e eficiente. Todos os resultados obtidos apresentaram um alto percentual de eficácia e melhor distribuição de atividade quando comparada às metodologias clássicas de núcleo de prata. As diferenças de eficiência entre núcleos foram causadas por flutuações estáticas do sistema de detecção e balança. A eficiência média dos núcleos foi 82,1 ± 3,2%
  • Artigo IPEN-doc 24425
    Radioactive waste management Goiânia - São Paulo: 30 years later
    2017 - SOUZA, D.C.B. de; GERALDO, B.; TESSARO, A.P.G.; ROSTELATO, M.E.C.M.; MARUMO, J.T.; CARVALHO, V.S.; BARBOSA, N.K.O.; VICENTE, R.
    Considered the largest urban radiological accident in the world, the accident in Goiânia with Cesium-137 resulted in the death of four people and injuries in another 49, besides measurable levels of internal or exter-nal contamination in 129. The accident generated also environmental contamination and thousands of tons of radioactive waste that resulted from the response activities. The accident occurred as a result of the disman-tling of an equipment of radiotherapy by employees of a junkyard. Before the accident was identified, con-taminated materials were sent to recycling companies in the state of São Paulo. The objective of this work was to report the existence of waste from Goiânia accident in the state of São Paulo and to check the estimat-ed activities at the time of the waste conditioning by measuring the current dose rates in waste packages, allowing a refinement of previously applied calculations.
  • Artigo IPEN-doc 24424
    Evaluation of Exhaust System for Gaseous Waste from the Source Production Laboratory for Radiotherapy – IPEN
    2017 - SOUZA, D.C.B. de; COSTA, O.L.; FEHER, A.; GERALDO, B.; CARVALHO, V.S.; BARBOSA, N.K.O.; VICENTE, R.; ZEITUNI, C.A.; ROSTELATO, M.E.C.M.
    Exhaust systems in fume hood for chemicals and hazardous materials as radioactive substances are of great importance for the protection of the Occupationally Exposed Individual and the environment. They protect against external contam-inations by particulate matter, volatile and against inhalation of radioactive gases. This work intends to evaluate the exhaustion system of the Laboratory of Production of Radioactive Sources at the Nuclear and Energy Research Institute (IPEN).
  • Artigo IPEN-doc 24374
    Waste management protocols for iridium-192 sources production laboratory used in cancer treatment in Brazil
    2017 - ROSTELATO, M.E.C.M.; SOUZA, D.C.B.; SOUZA, C.D.; ZEITUNI, C.A.; VICENTE, R.; COSTA, O.L.; RODRIGUES, B.T.; MOURA, J.A.; FEHER, A.; MOURA, E.S.; MARQUES, J.R.O.; CARVALHO, V.S.; NOGUEIRA, B.R.
    Objective: The iridium-192 wired sources production results in radioactive waste that needs to follow the guidelines. The aim of this study is to do a radioactive waste management of wastes from iridium-192 sources production laboratory used in cancer treatment in Brazil. Methods: The wire is acquired in an alloy form with 80% platinum and 20% iridium encapsulated with 100%. Electronic microscopy, X-ray fluorescence, and posterior iridium neutron activation (to determine contaminants) are performed to ensure quality. A 50-cm twisted wire is placed in an aluminum tube. The tube is sealed and place inside the reactor irradiator system and is left for decay during 30 hours to wait for the others undesired activation products to decay. The wire is prepared for treatment with 48 cm length with 192 mCi maximum activity. All the equipment use inside the hot cell must be calibrated every four months. All the waste must be removed from the hot cell. Results: The solid waste is previously characterized in the analysis phase. The contaminants are already known and they are insignificant due to their fast half-life. The iridium-192 half-life is 74.2 days, classified as very short half-life waste. The reminiscent activity is 8mCi. Conclusion: The radioactive waste generated during the I192 wires production is solid, was a short half-life and a weakly activity of 9.7 GBq.g-1. According to the standards, this activity is too high to be discarded into the environment (limit 10 Bq.g-1). The waste must be managed by the R&R (retain e retard) system.