DJALMA BATISTA DIAS

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 27707
    Study of renewable silica powder influence in the preparation of bioplastics from corn and potato starch
    2021 - AZEVEDO, LUCIANA C. de; ROVANI, SUZIMARA; SANTOS, JONNATAN J.; DIAS, DJALMA B.; NASCIMENTO, SANDI S.; OLIVEIRA, FABIO F.; SILVA, LEONARDO G.A.; FUNGARO, DENISE A.
    In the present study, 0.5–1.5% silica powder, from sugarcane waste ash, was incorporated into corn and potato starch bioplastics doped with sodium silicate solution to improve the properties of elongation at break and increase the thermal resistance of the bioplastics. The starch-based bioplastics were produced by casting and characterized by color analyses, transparency, opacity apparent, humidity, thickness, tensile strength, elongation at break, FTIR, DSC, SEM, and biodegradation assay. The addition of 0.5% of silica powder improved the elongation at break of the corn starch-based bioplastics. The sample CS5-P0.5 presented the highest percentage of elongation at the break among the studied samples, increased from 59.2% (without silica powder) to 78.9% (with silica powder). For potato starch bioplastic the addition of 0.5% of silica powder did not improve elongation at break but increased the thermal resistance. Increased until 17 °C for PS5-P0.5 sample and until 11 °C for PS7.5-P0.5 sample. The bioplastics of potato starch were biodegraded in 5 days, and those of corn starch took almost 40 days. Silica powder inhibited the growth of fungi in starch bioplastics.
  • Artigo IPEN-doc 27156
    Biodegradable films derived from corn and potato starch and study of the effect of silicate extracted from sugarcane waste ash
    2020 - AZEVEDO, LUCIANA C. de; ROVANI, SUZIMARA; SANTOS, JONNATAN J.; DIAS, DJALMA B.; NASCIMENTO, SANDI S.; OLIVEIRA, FABIO F.; SILVA, LEONARDO G.A.; FUNGARO, DENISE A.
    The growing concern with the amount of plastic materials found in the oceans makes it necessary to develop biodegradable materials that have low toxicity to marine animals and humans, but at the same time are resistant to the actions of microorganisms such as fungi or bacteria. On the other hand, agricultural waste rich in inorganic materials (such as silica) is often discarded, while it could be reused as a source of raw material. Considering these points, sodium silicate solution extracted from sugarcane waste ash was utilized to prepare biodegradable bioplastics based on corn starch and potato starch. The starch-based bioplastics were produced by casting and characterized by several physical-chemical techniques evaluating tensile strength, elongation at break, color analyses, transparency, opacity, moisture, and biodegradation assay. Bioplastics prepared with corn starch presented better physical, mechanical, and thermal properties and optical quality than bioplastics based on potato starch. The samples called CS3 and PS3, with 5.0% glycerol, were the most resistant to tensile strengths of 0.73 and 0.36 MPa, respectively. On the other hand, the highest elongation at break values were found for the samples with 7.5% glycerol (CS9, 52.90% and PS9, 49.33%). Corn starch-based bioplastics were more thermally resistant (CS3, 152.86 °C and CS9, 135.20 °C) when compared to potato starch-based bioplastics (PS3, 140.39 °C and PS9, 127.57 °C). In general, the addition of sodium silicate solution improved the mechanical and thermal properties of both types of bioplastics. The potato starch-based bioplastics were biodegraded in 5 days, while those made from corn starch took almost 40 days. The inclusion of sodium silicate inhibited fungal growth for both corn starch and potato starch bioplastics. The results suggest that sodium silicate solution obtained from renewable sources can be incorporated into starch-based bioplastics for production of biodegradable packaging with antifungal activity.