ANSELMO FEHER

(Fonte: Lattes)
Resumo

Graduado em Tecnologia Mecânica com ênfase em soldagem pela Faculdade de Tecnologia de São Paulo (1992), possui mestrado em Tecnologia Nuclear pela Universidade de São Paulo (2006) e doutorado em Tecnologia Nuclear pela Universidade de São Paulo (2014). Atualmente é Servidor Público Federal da Comissão Nacional de Energia Nuclear, órgão vinculado ao Ministério da Ciência, Tecnologia e Inovação. Tem experiência nas áreas de Engenharia Mecânica e Aplicações Nucleares, atuando principalmente em desenvolvimento e manutenção de sistemas de alto vácuo, ensaios de detecção de vazamentos utilizando espectrômetros de massa para gás hélio, produção de fontes radioativas seladas, soldagem por arco plasma, soldagem a laser, braquiterapia, sementes de iodo-125 e fontes de irídio-192 para tratamento de câncer. (Texto extraído do Currículo Lattes em 28 mar. 2023)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 27857
    A proposal of process validation in the implementation of Good Manufacturing Practices in brachytherapy sources production
    2021 - BAPTISTA, TATYANA S.; FEHER, ANSELMO; RODRIGUES, BRUNA T.; ZEITUNI, CARLOS A.; MOURA, JOÃO A.; ROSTELATO, MARIA E.C.M.
    New laboratories for brachytherapy sources production are being implemented in our facility at IPEN, in São Paulo. A great challenge implementing a production laboratory is to comply with the Good Manufacturing Practices (GMPs), which involves process validation and all supporting activities such as cleaning and sanitization. Much more than compliance with regulatory guidelines, required for certification and inspections, a validation builds large process knowledge, provides possibilities for optimization and improvement, increasing the degree of maturity of all people involved and the quality system. The process validation results in a document that certifies that any procedure, process, equipment, material, operation, or system leads to the expected results. This work focused on the new laboratory, been assembled to produce small iodine-125 seeds. The process validation was performed three times for evaluation. The parameters evaluated in this study were: the source welding efficiency and the leakage tests results (immersion test). The welding efficiency does not have an established parameter, since is visually evaluated by the operator, and the leakage detection must be under 5 nCi / 185 Bq, accordingly with the ISO 9978. We observed values were average 79-87% production efficiency and leakage tests were under 5 nCi/seed. Although established values for the global efficiency aren’t available in the literature, the results showed high consistency and acceptable percentages, especially when other similar manufacturing processes are used in comparison (average 85-70% found in the literature for other similar metallic structures). Those values will be important data when drafting the validation document and to follow the Good Manufacturing Practices (GMPs).
  • Artigo IPEN-doc 27362
    New core configuration for the fabrication of 125I radioactive sources for cancer treatment
    2020 - SOUZA, CARLA D. de; ZEITUNI, CARLOS A.; FEHER, ANSELMO; MOURA, JOÃO A.; COSTA, OSVALDO L. da; ANGELOCCI, LUCAS V.; ROSTELATO, MARIA E.C.M.
    In order to provide prostate brachytherapy treatment for more Brazilian men, IPEN is building a laboratory for the manufacture of radioactive sources. The new methodology for the production of iodine-125 seeds with yield 71.7% ± 5.3%. Points of importance were evaluated/discussed: photo-sensibility, reaction vial type, the substitution for iodine-131, pH, and solution volume. The surface was analyzed by FTIR and EDS. At the end, a Monte Carlo-MCNP6 simulation was performed to evaluate the TG-43 parameters.