RODRIGO FERNANDO BRAMBILLA DE SOUZA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 16
  • Artigo IPEN-doc 29912
    Methane to methanol conversion using proton-exchange membrane fuel cells and PdAu/antimony-doped tin oxide nanomaterials
    2023 - MAIA, VICTORIA A.; NANDENHA, JULIO; GONCALVES, MARLON H.; SOUZA, RODRIGO F.B. de; O.NETO, ALMIR
    This study investigates the use of Au-doped Pd anodic electrocatalysts on ATO support for the conversion of methane to methanol. The study uses cyclic voltammetry, in situ Raman spectra, polarization curves, and FTIR analysis to determine the optimal composition of gold and palladium for enhancing the conversion process. The results demonstrate the potential for utilizing methane as a feedstock for producing sustainable energy sources. The Pd75Au25/ATO electrode exhibited the highest OCP value, and Pd50Au50/ATO had the highest methanol production value at a potential of 0.05 V. Therefore, it can be concluded that an optimal composition of gold and palladium exists to enhance the conversion of methane to methanol. The findings contribute to the development of efficient and sustainable energy sources, highlighting the importance of exploring alternative ways to produce methanol.
  • Artigo IPEN-doc 29680
    Conversão de metano em metanol com co-geração de energia elétrica a partir de catalisadores de paládio suportados em carbono
    2023 - SILVA, ARACELI J.; ZAMBIAZI, PRISCILLA J.; GOMES, PAULO V.R.; NANDENHA, JULIO; GODOI, CAMILA M.; SOUZA, RODRIGO F.B. de; NETO, ALMIR O.; AZEREDO, NATHALIA F.B.
    The application of solid electrolyte reactors for methane oxidation and energy co-generation is attractive, especially with the use of catalysts synthesized from noble metals such as palladium. In this work, we prepared three different compositions of palladium on carbon support to evaluate the composition that had the greatest potential for energy generation. Catalysts in the proportions of 5, 10 and 20% of Pd/C were tested for the conversion of greenhouse gases into organic molecules of higher added value using electrochemical fuel cell solid electrolyte reactors. The focus of this work was the conversion of methane into methanol, using the fuel cell as a reactor and the commercial Pd/C as electrocatalyst. The electrocatalysts were tested at the anode, analyzed by infrared (IR) spectroscopy and their activities verified by experiments with rotating ring disk electrode (RRDE). Higher levels of palladium (Pd/C 20%) favored obtaining electrical power, and the intermediate composition (Pd/C 10%) showed a greater production of less oxidized compounds, such as methanol, in addition to generating electricity.
  • Artigo IPEN-doc 29679
    Desempenho eletrocatalítico de Pd/C e Pt/C para geração de energia a partir do extrato de cana-de-açúcar em célula a combustível de líquido direto
    2023 - VILLARDI, BRUNO D.Q.; FILHO, NIVALDO G.P.; GOMES, PAULO V.R.; NANDENHA, JULIO; GODOI, CAMILA M.; TAGOMORI, THAIS L.; AZEREDO, NATHALIA; SOUZA, RODRIGO F.B. de; NETO, ALMIR O.; ZAMBIAZI, PRISCILLA J.
    The processing of biomass to obtain fuels such as ethanol results in generating waste and polluting the environment. However, to meet energy demand and simultaneously reduce environmental pollution, fuel cells are promising devices for converting chemical compounds into electricity. Fuel cells can be powered by various types of liquids, including the sugars available in sugarcane extract, with high energy potential. Fuel cells employ the use of noble metals as electrocatalysts, such as Pt or Pd, to carry out the oxidation of these fuels. In this sense, this work reports the study of the oxidation of sugarcane extract in these different noble metals. The platinum catalyst was shown to be more active for the oxidation of sugars, resulting in a power density 10 times greater than Pd/C using a 50% diluted sugarcane extract solution, resulting in promising fuel cell systems. To produce ecologically correct electrical energy for the industry in general.
  • Artigo IPEN-doc 28995
    cis-[6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine](dichloride) palladium(II)-based electrolyte membrane reactors for partial oxidation methane to methanol
    2022 - GARCIA, LUIS M.S.; ZAMBIAZI, PRISCILLA J.; CHAIR, KHAOULA; DOAN, TUAN D.; RAMOS, ANDREZZA S.; NANDENHA, JULIO; SOUZA, RODRIGO F.B. de; OTUBO, LARISSA; DUONG, ADAM; NETO, ALMIR O.
    Methane is an abundant resource and the main constituent of natural gas. It can be converted into higher value-added products and as a subproduct of electricity co-generation. The application of polymer electrolyte reactors for the partial oxidation of methane to methanol to co-generate power and chemical products is a topic of great interest for gas and petroleum industries, especially with the use of materials with a lower amount of metals, such as palladium complex. In this study, we investigate the ideal relationship between cis-[6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine(dichloride)palladium(II)] (Pd-complex) nanostructure and carbon to obtain a stable, conductive, and functional reagent diffusion electrode. The physical and structural properties of the material were analyzed by Fourier transform infrared (FT-IR) and Raman spectroscopies, transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) techniques. The electrocatalytic activity studies revealed that the most active proportion was 20% of Pd-complex supported on carbon (m/m), which was measured with lower values of open-circuit and power density but with higher efficiency in methanol production with reaction rates of r = 4.2 mol L–1·h–1 at 0.05 V.
  • Artigo IPEN-doc 28670
    CO2 reduction on Cu/C used as a cathode in a polymeric electrolyte reactor
    2022 - LIMA, MARIANA; GODOI, CAMILA M.; SANTOS, MONIQUE C.L.; NANDENHA, JULIO; NETO, ALMIR O.; SOUZA, RODRIGO F.B. de
    CO2 is one of the leading greenhouse gases, so studies that turn this gas into higher value-added products, that function as simpler and cheaper hydrogen stores, as an alcohols, are extremely important. In this work we using a polymeric Electrolyte Reactor– fuel cell type supplied with H2 on platinum anode and dry CO2 in the cathode with a copper-carbon electrocatalyst. Copper nanoparticles supported on carbon Vulcan XC72 were produced by the sodium borohydride reduction method. The XRD revealed the presence of two different phases, CuO and Cu2O. In addition, the TEM images revealed agglomerates presence. The water, formaldehyde, methanol, methane, formic acid, dimethyl ether, oxalic acid, dimethyl carbonate, and ethylene-glycol were observed by differential mass spectroscopy on line with the reaction and the onset potential for each product and these results were confirmed by infrared spectroscopy – ATR-FTIR setup. This work showed the mapping CO2 reduced compounds for onset potential proposing some contributions to the literature.
  • Artigo IPEN-doc 28154
    Addition of bismuth to Pt and Pd for electric power generation with selective cogeneration of acetate from ethanol in a fuel cell type reactor
    2021 - LIMA, F.S.; FONTES, E.H.; NANDENHA, J.; SOUZA, R.F.B. de; NETO, A.O.
    Pt/C, PtBi(95:5)/C, Pd/C, and PdBi(95:5)/C were synthesized by the sodium borohydride reducing method to produce metal nanoparticles with advanced electronic properties to enhance the ethanol oxidation reaction (EOR) mechanism. The Transmission Electron Microscopy (TEM) images and X-ray photoelectron spectroscopy (XPS) showed that a small Bi content does not affect the nanoparticle size PdBi/C; in contrast, it does affect the PtBi ones. The X-ray diffraction analysis revealed a lattice parameter modification by Bi dope in Pt crystalline structure. Furthermore, the ATR-FTIR results indicated the suppression of carbonate formation and increment in acetate production. The results of polarization and power density curves on DEFC, the material PtBi/C presented the more high power density, almost six times bigger than Pt/C. PtBi/C also has the highest current density (44 mW/cm2) and the lowest onset potential (−0.6 V) in linear sweep voltammetry experiments. It also has the highest final current density in current-time experiments. Hence, PtBi/C is a very promising electrocatalyst for DEFC.
  • Artigo IPEN-doc 27782
    Borohydride reduction method for PdIn/C electrocatalysts synthesis towards glycerol electrooxidation under alkaline condition
    2021 - NANDENHA, JULIO; RAMOS, CARLOS E.D.; SILVA, SIRLANE G. da; SOUZA, RODRIGO F.B. de; FONTES, ERIC H.; OTTONI, CRISTIANE A.; OLIVEIRA NETO, ALMIR
    Pd−In/C electrocatalysts were synthesized by the adapted borohydride reduction method in different atomic ratios. Electrocatalysts were evaluated by conventional electrochemical techniques and direct glycerol fuel cells. X-ray diffraction profiles indicated the structure of Pd and In (fcc) phases, as well as the presence of In higher oxidation states. Regarding Transmission electron microscopy, it showed the particle‘s average diameters between 6.1–12.7 nm. All PdIn/C electrocatalysts showed high current values for −0.30 V vs. Ag/AgCl, which the best one was PdIn/C 90 : 10. Higher performance for glycerol oxidation was observed in polarization curves at 90 °C for PdIn/C (30 : 70) composition.
  • Artigo IPEN-doc 27383
    High CO tolerance of Pt nanoparticles synthesized by sodium borohydride in a time-domain NMR spectrometer
    2020 - RAMOS, A.S.; SANTOS, M.C.L.; GODOI, C.M.; QUEIROZ, L.C. de; NANDENHA, J.; FONTES, E.H.; BRITO, W.R.; MACHADO, M.B.; NETO, A.O.; SOUZA, R.F.B. de
    The CO poisoning effect was overcome using a novel synthesis method. This method consists of using sodium borohydride reducing agent assisted by magnetic field and radiofrequency pulses in the time-domain NMR spectrometer. This synthesis was useful to disperse the Pt nanoparticles over the carbon support and to compress the lattice strain of the Pt crystalline structure. Besides that, Pt/C MFP90° showed a multi-CO oxidation component in cyclic voltammetry, and this can avoid the poisoning effect by creating a large availability of CO species to be adsorbed, desorbed, and re-adsorbed. Pt/C MFP90° has also shown the best performance in the PEMFC regarding H2 and CO + H2 experiments.
  • Artigo IPEN-doc 27245
    Comparison of various atomic compositions of Au@Pd/C, Pd/C, and AuPd/C electrocatalysts for direct ethanol fuel cells
    2020 - FONTES, ERIC H.; NANDENHA, JULIO; PIASENTIN, RICARDO M.; SOUZA, RODRIGO F.B. de; NETO, ALMIR O.
    Pd/C, Au@Pd/C (core-shell), and AuPd/C (AR—consisting in Au microparticles) were used as electrocatalysts for ethanol oxidation in alkaline medium. A synergistic effect between Au and Pd atoms in Au@Pd/C makes the binding between ethanol and Au@Pd/C stronger. This leads to product formation in higher potentials and can be useful to select ethanol products. We also showed that the atomic composition of the electrocatalysts to be used in fuel cells and in powder form to be used in electrochemical experiments are very similar, reaching high values of correlation. The depth profiling X-ray photoelectron spectroscopy for the anode catalysts to be used in fuel cells can provide new insights about ethanol oxidation in direct ethanol fuel cells (DEFCs), for instance, metal oxide species can act in fuel cells environment. In terms of electric generation, Au@Pd/C presented a better performance in electrochemical experiments; the current density was about 1.6 times higher than the peak current density obtained for Pd/C. In terms of electrochemical stability, Au@Pd/C presented better final current density when compared to Pd/C and AuPd/C electrocatalysts. However, in DEFC experiments, Pd/C showed better performance.
  • Artigo IPEN-doc 27220
    Methane activation at low temperature in an acidic electrolyte using PdAu/C, PdCu/C, and PdTiO2/C electrocatalysts for PEMFC
    2020 - SOUZA, FELIPE de M.; SOUZA, RODRIGO F.B. de; BATISTA, BRUNO L.; SANTOS, MAURO C. dos; FONSECA, FABIO C.; OLIVEIRA NETO, ALMIR; NANDENHA, JULIO
    Pd/C, PdAu/C, PdCu/C, and PdTiO2/ C electrocatalysts were prepared by a sodium borohydride reduction process for methane activation at low temperatures in a PEMFC reactor. These electrocatalysts were characterized by XRD, TEM, XPS, ICP-MS, ATR-FTIR, and cyclic voltammetry. The diffractograms of Pd/C, PdAu(50:50)/C, PdCu(50:50)/C, and PdTiO2( 50:50)/C electrocatalysts showed peaks associated with Pd face-centered cubic structure. PdAu(50:50)/C showed a small shift in the peak center when it was compared to Pd/C, while PdCu(50:50)/C showed a shift to higher angles when it was also compared to Pd/C. This effect can be due to the formation of an alloy between Pd and Au, and Pd and Cu. By TEM experiments, a mean nanoparticle size was observed between 6.9 and 8.9 nm for all electrocatalysts. Cyclic voltammograms of Pd/C, PdAu/C, PdCu/C and PdTiO2/ C electrocatalysts showed an increase in current density values after the adsorption of methane The ATR-FTIR experiments showed for all electrocatalysts the formation of methanol and formic acidic. Polarization curves at 80 °C acquired in a PEMFC reactor showed that PdAu(50:50)/C and PdTiO2( 50:50)/C had superior performance when compared to Pd/C, indicating the beneficial effect of adding the co-catalyst; this behavior has been attributed to the bifunctional mechanism or electronic effect.