RODRIGO FERNANDO BRAMBILLA DE SOUZA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 28995
    cis-[6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine](dichloride) palladium(II)-based electrolyte membrane reactors for partial oxidation methane to methanol
    2022 - GARCIA, LUIS M.S.; ZAMBIAZI, PRISCILLA J.; CHAIR, KHAOULA; DOAN, TUAN D.; RAMOS, ANDREZZA S.; NANDENHA, JULIO; SOUZA, RODRIGO F.B. de; OTUBO, LARISSA; DUONG, ADAM; NETO, ALMIR O.
    Methane is an abundant resource and the main constituent of natural gas. It can be converted into higher value-added products and as a subproduct of electricity co-generation. The application of polymer electrolyte reactors for the partial oxidation of methane to methanol to co-generate power and chemical products is a topic of great interest for gas and petroleum industries, especially with the use of materials with a lower amount of metals, such as palladium complex. In this study, we investigate the ideal relationship between cis-[6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine(dichloride)palladium(II)] (Pd-complex) nanostructure and carbon to obtain a stable, conductive, and functional reagent diffusion electrode. The physical and structural properties of the material were analyzed by Fourier transform infrared (FT-IR) and Raman spectroscopies, transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) techniques. The electrocatalytic activity studies revealed that the most active proportion was 20% of Pd-complex supported on carbon (m/m), which was measured with lower values of open-circuit and power density but with higher efficiency in methanol production with reaction rates of r = 4.2 mol L–1·h–1 at 0.05 V.
  • Artigo IPEN-doc 27246
    Conversion of methane into methanol using the [6,6′-(2,2′-bipyridine-6,6′-diyl)bis(1,3,5-triazine-2,4-diamine)](nitrato-O)copper(II) complex in a solid electrolyte reactor fuel cell type
    2020 - GARCIA, LUIS M.S.; RAJAK, SANIL; CHAIR, KHAOULA; GODOY, CAMILA M.; SILVA, ARACELI J.; GOMES, PAULO V.R.; SANCHES, EDGAR A.; RAMOS, ANDREZZA S.; SOUZA, RODRIGO F.B. de; DUONG, ADAM; NETO, ALMIR O.
    The application of solid electrolyte reactors for methane oxidation to co-generation of power and chemicals could be interesting, mainly with the use of materials that could come from renewable sources and abundant metals, such as the [6,6′- (2, 2′-bipyridine-6, 6′-diyl)bis (1,3,5- triazine-2, 4-diamine)](nitrate-O)copper (II) complex. In this study, we investigated the optimal ratio between this complex and carbon to obtain a stable, conductive, and functional reagent diffusion electrode. The most active Cu-complex compositions were 2.5 and 5% carbon, which were measured with higher values of open circuit and electric current, in addition to the higher methanol production with reaction rates of 1.85 mol L−1 h−1 close to the short circuit potential and 1.65 mol L−1 h−1 close to the open circuit potential, respectively. This activity was attributed to the ability of these compositions to activate water due to better distribution of the Cu complex in the carbon matrix as observed in the rotating ring disk electrode experiments.