RODRIGO FERNANDO BRAMBILLA DE SOUZA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • Artigo IPEN-doc 29912
    Methane to methanol conversion using proton-exchange membrane fuel cells and PdAu/antimony-doped tin oxide nanomaterials
    2023 - MAIA, VICTORIA A.; NANDENHA, JULIO; GONCALVES, MARLON H.; SOUZA, RODRIGO F.B. de; O.NETO, ALMIR
    This study investigates the use of Au-doped Pd anodic electrocatalysts on ATO support for the conversion of methane to methanol. The study uses cyclic voltammetry, in situ Raman spectra, polarization curves, and FTIR analysis to determine the optimal composition of gold and palladium for enhancing the conversion process. The results demonstrate the potential for utilizing methane as a feedstock for producing sustainable energy sources. The Pd75Au25/ATO electrode exhibited the highest OCP value, and Pd50Au50/ATO had the highest methanol production value at a potential of 0.05 V. Therefore, it can be concluded that an optimal composition of gold and palladium exists to enhance the conversion of methane to methanol. The findings contribute to the development of efficient and sustainable energy sources, highlighting the importance of exploring alternative ways to produce methanol.
  • Artigo IPEN-doc 29709
    PdxNiy/TiO2 Electrocatalysts for Converting Methane to Methanol in An Electrolytic Polymeric Reactor - Fuel Cell Type (PER-FC)
    2023 - COELHO, JESSICA F.; GUTIERREZ, ISABELY M.; PEREIRA FILHO, NIVALDO G.; ZAMBIAZI, PRISCILLA J.; OLIVEIRA NETO, ALMIR; SOUZA, RODRIGO F.B. de
    PdxNiy/TiO2 bimetallic electrocatalysts were used in fuel cell polymeric electrolyte reactors (PER-FC) to convert methane into methanol through the partial oxidation of methane promoted by the activation of water at room temperature. X-ray diffraction measurements showed the presence of Pd and Ni phases and TiO2 anatase phase. TEM images revealed mean particle sizes larger than those reported for PdNi materials supported, indicating that TiO2 promotes particle aggregation on its surface. Information on the surface structure of electrocatalysts obtained by Raman spectra indicated the presence or formation of NiO. The PER-FC tests showed the highest power density for the electrocatalyst with the lowest amount of nickel Pd80Ni20/TiO2 (0.58 mW cm􀀀2). The quantification of methanol through the eluents collected from the reactor showed higher concentrations of methanol produced, revealing that the use of TiO2 as a support also increased the reaction rate.
  • Artigo IPEN-doc 29083
    Production of methanol on PdCu/ATO in a polymeric electrolyte reactor of the fuel cell type from methane
    2022 - GODOI, CAMILA M.; GUTIERREZ, ISABELY M.; GOMES, PAULO V.R.; COELHO, JESSICA F.; ZAMBIAZI, PRISCILLA J.; OTUBO, LARISSA; NETO, ALMIR O.; SOUZA, RODRIGO F.B. de
    The search for alternatives for converting methane into value-added products has been of great interest to scientific, technological, and industrial society. An alternative to this could be the use of copper-doped palladium catalysts with different proportions supported on metal oxides, such as Sb2O5.SnO2 (ATO) catalysts. These combinations were employed to convert the methane-to-methanol in mild condition using a fuel cell polymer electrolyte reactor. The catalysts prepared presents Pd, CuO, and Sb2O5.SnO2 phases with a mean particle size of about 9 nm. In activity experiments, the Pd80Cu20/ATO indicated maximum power density and maximum rate reaction for methanol production when compared to other PdCu/ATO materials. The use of ATO as a support favored the production of methanol from methane, while PdCu with high copper content demonstrated the production of more oxidized compounds, such as carbonate and formate.