FRANCO BRANCACCIO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 19
  • Artigo IPEN-doc 29810
    k0‑IPEN
    2023 - DIAS, MAURO da S.; SEMMLER, RENATO; KOSKINAS, MARINA F.; MOREIRA, DENISE S.; YAMAZAKI, IONE M.; BRANCACCIO, FRANCO; BARROS, LIVIA F.; RIBEIRO, RAFAEL V.; MORAIS, THALES S.L. de
    A software package for INAA (Instrumental Neutron Activation Analysis), developed at the Nuclear Metrology Laboratory of the IPEN-CNEN/SP, called k0-IPEN, is described. The package consists of a main program linked to nine subprograms designed to perform automatically most of the tasks necessary in order to obtain the mass fractions of the irradiated samples. External efficiency curves calculated by the Monte Carlo code MCNP6 can be read to extend the calibration curve to source to detector distances where only a few experimental points are available. Covariance analysis was used in all steps of the calculation. The validation of the code was tested in an intercomparison sponsored by the IAEA.
  • Resumo IPEN-doc 28957
    k0-IPEN
    2022 - DIAS, MAURO da S.; SEMMLER, RENATO; KOSKINAS, MARINA F.; MOREIRA, DENISE S.; YAMAZAKI, IONE M.; BRANCACCIO, FRANCO; BARROS, LIVIA F.; RIBEIRO, RAFAEL V.; MORAIS, THALES S.L. de
    A new software package for INAA, developed at the Nuclear Metrology Laboratory (LMN) of the Nuclear and Energy Research Institute (IPEN-CNEN/SP), called k0-IPEN, is described. The package consists of a main program linked to nine subprograms designed to perform automatically all the tasks necessary in order to obtain the mass fractions of the irradiated samples. The goals of these nine routines are: a) to calculate the experimental peak efficiencies and P/T ratios for the standard sources, together with all the corresponding uncertainties; b) to correct the peak efficiencies for coincidence summing; c) to fit the peak efficiencies and P/T ratios with log-log polynomial functions; d) to determine experimentally the  and f parameters by the Triple Bare and by the Cd Ratio Multimonitor Methods; e) to correct for interferences; f) to determine the average mass fractions, taking into account the correlations among all partial uncertainties involved. In the present version, the only data that must be inserted as input parameter, externally from the package, are the self-shielding correction factor, which is calculated by the MATSSF code, and the geometry factor that corrects for the difference between sizes of standard sources and measured samples. The code can deal with different spectrum formats such as CHN, SPE and CNF. The routine designed to calculate the peak areas has a simple algorithm and is not yet capable of separating multiplets. Therefore, it is suitable for analysing separated peaks, such as those found in standard calibration source measurements. However, for complex spectra, the code can read peak list files obtained from other codes, such as HyperMet or HyperLab. External efficiency curves calculated by the Monte Carlo code MCNP6 can be read to extend the calibration curve to regions where there are only a few experimental points available. The code k0-IPEN is being tested and its validation accomplished by means of an intercomparison sponsored by the IAEA, and presented at this conference.
  • Artigo IPEN-doc 27118
    Primary standardization and determination of gamma ray emission intensities of Ho-166
    2020 - YAMAZAKI, I.M.; KOSKINAS, M.F.; MOREIRA, D.S.; SEMMLER, R.; BRANCACCIO, F.; DIAS, M.S.
    The procedure followed by the Nuclear Metrology Laboratory (LMN) at the IPEN-CNEN/SP, in S~ao Paulo, for the primary standardization of 166Ho is described. The activity of 166Ho was determined by the efficiency extrapolation technique applied to a 4πβ(PC)-γ coincidence system using a gas flow proportional counter in 4π geometry coupled to a 76 x 76 mm NaI(Tl) crystal. The results for the γ-rays intensities at 80.57 and 1379.45 keV were 0.0651(11) and 0.00904(11), respectively.
  • Artigo IPEN-doc 26420
    Data analysis software package for radionuclide standardization with a digital coincidence counting system
    2020 - BRANCACCIO, F.; DIAS, M.S.; KOSKINAS, M.F.; MOREIRA, D.S.; TOLEDO, F. de
    The Nuclear Metrology Laboratory (LMN) – IPEN, S~ao Paulo, Brazil – developed a Digital Coincidence System (DCS), based on the Coincidence Counting Methodology, in order to improve its capabilities in radionuclide primary-standardization. Digital process is implemented in two steps: data-acquisition (a set of measurements) and offline software data-analysis and calculation. The present work shows the basics of the data-acquisition unit (Software Coincidence System – SCS), describes the DCS’ data-analysis process and the initial approaches chosen for the implementation of the software package (Coincidence Analyzing Task – CAT). 152Eu standardization, performed for DCS testing, software expansion and validation, is briefly discussed.
  • Artigo IPEN-doc 23950
    Standardization of 59Fe by 4π(PC)β–γ software coincidence system
    2016 - KOSKINAS, M.F.; POLILLO, G.; BRANCACCIO, F.; YAMAZAKI, I.M.; DIAS, M.S.
    The procedure for the standardization of 59Fe using a 4π(PC)β–γ software coincidence system is de-scribed. The standardization was performed with an experimental setup consisting of a thin window gas- flow proportional counter (PC)in4π geometry coupled to a NaI(Tl) scintillator and to a HPGe detector. The data acquisition was carried out by means of a Software Coincidence System (SCS).The beta efficiency was changed by using Collodion films Colldion films andaluminum foils as external absorbers.
  • Artigo IPEN-doc 22523
  • Resumo IPEN-doc 22484
    Data analysis software for radionuclide standardization with a digital coincidence counting system
    2014 - BRANCACCIO, FRANCO; DIAS, MAURO da S.; KOSKINAS, MARINA F.
  • Artigo IPEN-doc 20990
    Standardization of C-14 by tracing method
    2015 - KOSKINAS, MARINA F.; KUZNETSOVA, MARIA; YAMAZAKI, IONE; BRANCACCIO, FRANCO; DIAS, MAURO S.
  • Artigo IPEN-doc 10748
    Monte Carlo simulation of a digital coincidence system applied to sup(60)Co standardization
    2005 - BRANCACCIO, F.; DIAS, M.S.; KOSKINAS, M.F.