PAULA CRISTINA GUIMARÃES ANTUNES

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 13
  • Artigo IPEN-doc 30038
    Heterogeneous physical phantom for I-125 dose measurements and dose-to-medium determination
    2024 - ANTUNES, PAULA C.G.; SIQUEIRA, PAULO de T.D.; SHORTO, JULIAN M.B.; YORIYAZ, HELIO
    PURPOSE: In this paper we present a further step in the implementation of a physical phantom designed to generate sets of “true”independent reference data as requested by TG-186, intending to address and mitigate the scarcity of experimental studies on brachytherapy (BT) validation in heterogeneous media. To achieve this, we incorporated well-known heterogeneous materials into the phantom in order to perform measurements of 125I dose distribution. The work aims to experimentally validate Monte Carlo (MC) calculations based on MBDCA and determine the conversion factors from LiF response to absorbed dose in different media, using cavity theory. METHODS AND MATERIALS: The physical phantom was adjusted to incorporate tissue equivalent materials, such as: adipose tissue, bone, breast and lung with varying thickness. MC calculations were performed using MCNP6.2 code to calculate the absorbed dose in the LiF and the dose conversion factors (DCF). RESULTS: The proposed heterogeneous phantom associated with the experimental procedure carried out in this work yielded accurate dose data that enabled the conversion of the LiF responses into absorbed dose to medium. The results showed a maximum uncertainty of 6.92 % ( k = 1), which may be considered excellent for dosimetry with low-energy BT sources. CONCLUSIONS: The presented heterogeneous phantom achieves the required precision in dose evaluations due to its easy reproducibility in the experimental setup. The obtained results support the dose conversion methodology for all evaluated media. The experimental validation of the DCF in different media holds great significance for clinical procedures, as it can be applied to other tissues, including water, which remains a widely utilized reference medium in clinical practice.
  • Artigo IPEN-doc 29631
    A versatile physical phantom design and construction for I-125 dose measurements and dose-to-medium determination
    2023 - ANTUNES, PAULA C.G.; SIQUEIRA, PAULO de T.D.; SHORTO, JULIAN M.B.; YORIYAZ, HELIO
    PURPOSE: In this paper we present a phantom designed to provide conditions to generate set of “true” independent reference data as requested by TG-186, and mitigating the scarcity of experimental studies on brachytherapy validation. It was used to perform accurate experimental measurements of dose of 125I brachytherapy seeds using LiF dosimeters, with the objective of experimentally validating Monte Carlo (MC) calculations with model-based dose calculation algorithm (MBDCA). In addition, this work intends to evaluate a methodology to convert the experimental values from LiF into dose in the medium. METHODS AND MATERIALS: The proposed PMMA physical phantom features cavities to insert a LiF dosimeter and a 125I seed, adjusted in different configurations with variable thickness. Monte Carlo calculations performed with MCNP6.2 code were used to score the absorbed dose in the LiF and the dose conversion parameters. A sensitivity analysis was done to verify the source of possible uncertainties and quantify their impact on the results. RESULTS: The proposed phantom and experimental procedure developed in this work provided precise dose data within 5.68% uncertainty (k = 1). The achieved precision made it possible to convert the LiF responses into absorbed dose to medium and to validate the dose conversion factor methodology. CONCLUSIONS: The proposed phantom is simple both in design and as in its composition, thus achieving the demanded precision in dose evaluations due to its easy reproducibility of experimental setup. The results derived from the phantom measurements support the dose conversion methodology. The phantom and the experimental procedure developed here can be applied for other materials and radiation sources.
  • Artigo IPEN-doc 28878
    Influence dosimetric study of different couches in radiotherapy treatments
    2022 - DEL NERO, R.A.; EMILIOZZI, C.Z.S.; SIQUEIRA, P.T.D.; ANTUNES, P.C.G.; SERANTE, A.R.
    Radiotherapy is a recommended procedure for 52% of cancer cases, in average, as one of the treatment forms, therefore, it is important for the clinical practice to investigate the affecting factors in dose distribution received by the patients, such as immobilization devices and treatment couch. With the introduction of treatments with modulated intensity techniques like IMRT and VMAT, the number of incidence fields used for patient treatment increased, making couch’s dosimetric effect more significant in these modalities. The attenuation data acquisition referring to the treatment couches, as well as the TPS data evaluation, show important parameters for the clinical practice because they influence what happens with the dose delivery during the treatment, ensuring a better quality and safety to the treatments. This research presents experimental results evaluating the couch’s impact in the treatments by a study of perturbation in the distribution of surface dose, and dose attenuation according to the gantry’s angle for the couches BrainLABTM, ExactTM and iBEAMTM. Then we propose better density values for the couches BrainLABTM and ExactTM for their inclusion in EclipseTM TPS. Lastly, we compare the dose difference considering the presence or not of couch in the planning. In conclusion, the beam’s attenuation increase by the couches and the doses alterations on the skin must be taken in consideration in the treatment planning process. It is of great relevance that each treatment center perform internal tests to determinate the best density values for available TPS.
  • Artigo IPEN-doc 28649
    O método de Análise de Modos de Falha e de seus Efeitos (FMEA) como ferramenta de decisão para os testes de comissionamento de novos sistemas
    2021 - OLIVEIRA, JOAO M.; VERNUCIO, SILMARA L.; FREDIANI, LARISSA; ANTUNES, PAULA C.G.; YORIYAZ, HELIO
    Foi proposta a utilização da Análise de Modos de Falha e de suas Consequências (FMEA) como ferramenta de decisão para a escolha e priorização dos testes de comissionamento para novos equipamentos. Um aplicador Vienna para braquiterapia ginecológica intersticial foi utilizado como caso de estudo. Escalas de 1 a 5 foram utilizadas para classificar os riscos segundo a sua ocorrência, severidade e detectabilidade. Foram identificados 12 riscos e como resultado da sua classificação nove testes foram selecionados para o comissionamento. O índice de priorização do risco (RPN) médio mais elevado para o aplicador foi de 21,3 correspondente a 17% do máximo possível (125) e o mais baixo de 1,4. Em relação a sua classificação, 33,3% dos riscos tiveram RPN superior a 10 e 25% foram classificados com valor inferior a 5. Nenhum risco teve severidade superior ou igual a 4. Os três primeiros riscos por ordem de prioridade foram de naturezas diversas, sendo o primeiro e o segundo riscos de parâmetro físico, e o terceiro de software. Os testes finais selecionados após a classificação foram os listados inicialmente com base apenas nos riscos. Entretanto, a classificação dos riscos serviu de base para justificar a sua escolha. O método proposto permitiu a determinação dos testes ideais para o comissionamento do aplicador em questão, bem como a identificação dos testes mais críticos e prioritários.
  • Artigo IPEN-doc 27731
    Calculation of dose point kernel values for monoenergetic electrons and beta emitting radionuclides
    2021 - MENDES, BRUNO M.; ANTUNES, PAULA C.G.; BRANCO, ISABELA S.L.; NASCIMENTO, EDUARDO do; SENIWAL, BALJEET; FONSECA, TELMA C.F.; YORIYAZ, HELIO
    Targeted radionuclide therapy (TRT) and beta-emitting seeds brachytherapy (BSBT) exploit the characteristics of energy deposited by beta-emitting radionuclides. Monte Carlo (MC) modelling of electron transport is crucial for calculations of absorbed dose for TRT and BSBT. However, computer codes capable of providing consistent results are still limited. Since experimental validations show several difficulties, the estimation of electron dose point kernel (DPK) is often used to verify the accuracy of different MC codes. In this work, we compared DPK calculations for various point, isotropic and monoenergetic electron sources and several beta-emitting radioisotopes using the codes MCNP, EGSnrc, PENELOPE and TOPAS with different simulation options. The simulations were performed using latest versions of EGSnrc and Penelope, TOPAS version 3.3.1 and MCNP version 6.1 Monte Carlo codes. In our simulations, the geometrical model consists of a point electron source placed at the center of a water sphere emitting isotropically. The water sphere was divided into 28 shells and the energy deposition was scored within these shells. The radius of the outermost shell was 1.2R0, where R0 is the continuous slowing down approximation (CSDA) range. Five monoenergetic beta sources with energies of 0.05, 0.1, 0.5, 1 and 3 MeV were studied. Six beta-emitting radionuclides were also simulated: Lu-177, Sm-153, Ho-166, Sr-89, I-131 and Y-90. Monoenergetic electron simulations showed large deviations among the codes, larger than 13% depending on the electron energy and the distance from the source. In the cases where beta spectra of radionuclides were simulated, all MC codes showed differences from EGSnrc (used as reference value - RV) less than 3% within rE90 range (radius of the sphere in which 90% of the energy of the spectrum electrons would be deposited). TOPAS showed results comparable to EGSnrc and PENELOPE. DPK values for 0.1 MeV monoenergetic electrons, calculated using MCNP6, led to differences higher than ±5% from RV despite our attempts to tune electron transport algorithms and physics parameters.
  • Artigo IPEN-doc 26659
    Estudo dos efeitos de composição e densidade de materiais tecido equivalentes na distribuição de dose longitudinal em protonterapia
    2019 - BRANCO, ISABELA S.L.; ANTUNES, PAULA C.G.; SIQUEIRA, PAULO T.D.; SHORTO, JULIAN M.B.; YORIYAZ, HELIO
    A eficiência de procedimentos radioterápicos depende do equilíbrio entre o fornecimento de altas doses conformadas ao volume tumoral e a restrição das doses recebidas pelos tecidos e órgãos saudáveis circundantes. Sendo uma modalidade de radioterapia, a protonterapia destaca-se neste cenário por possuir vantagens dosimétricas, que, quando combinadas com avanços tecnológicos, permitem que um grande potencial na conformidade da distribuição de dose. Este trabalho visa contribuir em um estudo dosimétrico, especificamente considerando os efeitos da heterogeneidade devido à presença de materiais tecido equivalentes com diferentes densidades e composições químicas, de modo a analisar qual destes parâmetros exerce maior influência na distribuição de dose longitudinal. A metodologia desenvolvida neste trabalho foi baseada em simulações de Monte Carlo com o código GEANT4 (através da interface TOPAS). Os objetos simuladores cilíndricos representados foram compostos inteiramente por diversos materiais tecido-equivalentes. Três grupos de estudo guiaram as simulações, o primeiro manteve a composição e densidade originais dos materiais, ao seguinte foi atribuída a todos os materiais heterogêneos a mesma densidade da água, mas mantiveram-se suas composições químicas originais; e por fim, foram realizadas simulações com as densidades originais dos materiais heterogêneos e composição química da água para todos os casos. Através da análise da distribuição de dose longitudinal variando com a profundidade, foi possível observar o comportamento da influência dos parâmetros de composição e densidade no alcance do feixe (d90) para os diferentes materiais e energias analisados. O estudo mostrou que, o efeito que a densidade dos materiais tecido equivalentes exerce sobre a deposição de dose é mais expressivo que o efeito de sua composição. A maior exatidão no range de tratamento permite evitar uma sub ou sobre dosagem da área irradiada. Esta é uma das diversas linhas de pesquisa que contribuem para a diminuição das incertezas em protonterapia.
  • Artigo IPEN-doc 26469
    MCMEG
    2020 - FONSECA, T.C.F.; ANTUNES, P.C.G.; BELO, M.C.L.; BASTOS, F.; CAMPOS, T.P.; GERALDO, J.M.; MENDES, A.M.; MENDES, B.M.; PAIXÃO, L.; SANTANA, P.C.; SENIWAL, B.; SQUAIR, P.L.; YORIYAZ, H.
    The improvement of the Monte Carlo (MC) community skills on computational simulations in Medical Physics is crucial to the field of radiotherapy as well as radiology. The Monte Carlo Modelling Expert Group (MCMEG) is an expert network specialized in MC radiation transport modelling and simulation applied to the radiation protection and dosimetry research fields. The MCMEG addressed a multigroup dosimetric intercomparison exercise for modelling and simulating a case of prostate radiation therapy (RT) protocol. This intercomparison was launched in order to obtain the dose distribution in the prostate target volume and in the neighboring organs. Dose assessments were achieved by using TLDs. A protocol using two pair of parallel-opposed fields were planned and performed with Alderson-Rando Pelvic Phantom. The assessed organs at risk were the urinary bladder, rectum and right and left femur heads. The RT simulations were performed using the MCNPx, MCNP6 and egs++ and BEAMnrc/DOSXYZnrc modules of EGSnrc Monte Carlo codes. The dose to the target volume, mean doses and standard deviation in the organs at risk, and dose volume data were computed. A comparison between the simulated results and the experimental values obtained from TLD measurements was made. In some cases the results obtained using MC simulations showed large deviations in comparison to the results obtained from the TLD measurements and these variations can be explained by the difficulties in the modelling of the geometry, selection of MC parameters required for the simulations and the statistical errors and inaccuracies in experimental measurements. Even though, the exercise has been a great opportunity for the MC groups to learn and share the main difficulties found during the modelling and the analysis of the results. Concerned to the obtained variations, the MCMEG team consider that this was expected for the level of complexity of the exercise and must be studied by the MC groups.
  • Artigo IPEN-doc 25716
    Desenvolvimento de software de cálculo de dose pontual em braquiterapia baseado em simulações de Monte Carlo
    2018 - BRANCO, I.S.L.; LIMA, F.A.; ANTUNES, P.C.G.; YORIYAZ, H.; BELLEZZO, M.; FONSECA, G.P.; BORGUEZAN NETO, E.; BRUNO, A.C.; SANTO, M.L.R.; BARBI, G.L.; BORGES, L.F.; BERTUCCI, E.C.; VIANI, G.A.; PAVONI, J.F.
    Em braquiterapia, o controle de qualidade é necessário para garantir a consistência entre a dose clínica prescrita para o tratamento e a dose real administrada ao paciente. Entre os procedimentos necessários na adoção de um programa de garantia de qualidade se enquadra a verificação do sistema de planejamento e processo de planejamento e controle de qualidade rotineiro. Visando os processos de verificação do sistema de planejamento, inicialmente, neste trabalho uma fonte de 192Ir GammaMed Plus foi caracterizada com base em parâmetros estabelecidos pelo Task Group 43 (TG-43) da AAPM. Para avaliação de seus parâmetros dosimétricos, a fonte foi simulada através do Método de Monte Carlo, com o código MCNP6 (Monte Carlo NParticle). Os valores de distribuição de dose obtidos a partir da simulação foram comparados com os dados fornecidos pela literatura. As simulações serviram de base para o desenvolvimento de um software de código aberto, o BrachySure, que permite comparar a dose pontual calculada pelo sistema de planejamento e por Monte Carlo em um caso clínico real. Os resultados obtidos na caracterização da fonte, mostram uma ótima concordância com os dados bibliográficos, apresentando diferenças próximas à incerteza associada as simulações. O erro relativo máximo encontrado para a malha virtual simulada (mesh) foi de 0.31%, quando comparada com os valores de outros autores, a diferença relativa apresentou valores em torno de 1% para a maior parte dos pontos da malha. O software BrachySure foi pré-validado e apresentou um erro sistemático ainda a ser utilizado como objeto de pesquisa (em torno de 8%), além disso, este software forneceu uma dupla verificação de dose pontual de maneira rápida e simples, contribuindo para organização dos dados e registro de tratamentos. Intenta-se com os dados obtidos neste trabalho impulsionar o desenvolvimento de novas metodologias para uso na rotina clínica, que contribuam na incorporação de novas estimativas de doses com maior exatidão.
  • Artigo IPEN-doc 23169
    Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy
    2017 - GIMENEZ-ALVENTOSA, VINCENT; ANTUNES, PAULA C.G.; VIJANDE, JAVIER; BALLESTER, FACUNDO; PEREZ-CALATAYUD, JOSE; ANDREO, PEDRO
    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).
  • Artigo IPEN-doc 22821
    Monte Carlo studies on water and LiF cavity properties for dose-reporting quantities when using x-ray and brachytherapy sources
    2016 - BRANCO, ISABELA S.L.; ANTUNES, PAULA C.G.; FONSECA, GABRIEL P.; YORIYAZ, HELIO
    Model-based dose calculation algorithms (MBDCAs) are the current tools to estimate dose in brachytherapy, which takes into account heterogeneous medium, therefore, departing from water-based formalism (TG-43). One aspect associated to MBCDA is the choice of dose specification medium since it offers two possibilities to report dose: (a) dose to medium in medium, D-m,D-m; and (b) dose to water in medium, D-w,D-m. The discussion about the preferable quantity to be reported is underway. The dose conversion factors, DCF, between dose to water in medium, D-w,D-m, and dose to medium in medium, D-m,D-m, is based on cavity theory and can be obtained using different approaches. When experimental dose verification is desired using, for example, thermoluminescent LiF dosimeters, as in in vivo dose measurements, a third quantity is obtained, which is the dose to LiF in medium, D-LiF,D-m. In this case, DCF to convert from D-LiF,D-m to Dw, m or Dm, m is necessary. The objective of this study is to estimate DCFs using different approaches, present in the literature, quantifying the differences between them. Also, dose in water and LiF cavities in different tissue media and respective conversion factors to be able to convert LiF-based dose measured values into dose in water or tissue were obtained. Simple cylindrical phantoms composed by different tissue equivalent materials (bone, lung, water and adipose) are modelled. The phantoms contain a radiation source and a cavity with 0.002 69 cm(3) in size, which is a typical volume of a disc type LiF dosimeter. Three x-rays qualities with average energies ranging from 47 to 250 keV, and three brachytherapy sources, Co-60, Ir-192 and Cs-137, are considered. Different cavity theory approaches for DCF calculations and different cavity/medium combinations have been considered in this study. DCF values for water/bone and LiF/bone cases have strong dependence with energy increasing as the photon energy increases. DCF values also increase with energy for LiF/lung and water/lung cases but, they are much less dependent of energy. For LiF/adipose, water/adipose and LiF/water cases, the DCF values are also dependent of photon energy but, decreases as the energy increases. Maximum difference of 12% has been found compared to values in literature.